您好,欢迎访问三七文档
2018-2019学年江西省赣州市大余县九年级(上)期末数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.±1D.03.在平面直角坐标系中,平移二次函数y=x2+4x+3的图象能够与二次函数y=x2的图象重合,则平移方式为()A.向左平移2个单位,向下平移1个单位B.向左平移2个单位,向上平移1个单位C.向右平移2个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位4.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数5.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°6.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°二.填空题(共6小题,满分18分,每小题3分)7.抛物线y=2x2﹣4x+1的对称轴为直线.8.将直线y=x向上平移2个单位长度,平移后直线的解析式为.9.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛.设共有x个队参加比赛,则依题意可列方程为.10.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.11.如果一元二次方程2x2﹣5x+m=0有两个相等的实数根,那么实数m的取值为.12.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F,若∠ACF=64°,则∠E=.三.解答题(共5小题,满分30分,每小题6分)13.小明在解方程x2﹣2x﹣1=0时出现了错误,其解答过程如下:x2﹣2x=﹣1(第一步)x2﹣2x+1=﹣1+1(第二步)(x﹣1)2=0(第三步)x1=x2=1(第四步)(1)小明解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.14.已知关于未知数x的方程:x2+4x+m=0有实数解.(1)求m的范围;(2)若有一个实数解为1,求另一个解和m的值.15.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.16.如图,一、二、三、四这四个扇形的面积之比为1:3:5:1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?17.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.四.解答题(共3小题,满分24分,每小题8分)18.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?19.如图,在平面直角坐标系中,已知A(1,0),B(2,0),四边形ABCD是正方形.(1)写出C,D两点坐标;(2)将正方形ABCD绕O点逆时针旋转90°后所得四边形的四个顶点的坐标分别是多少?(3)若将(2)所得的四边形再绕O点逆时针旋转90°后,所得四边形的四个顶点坐标又分别是多少?20.已知关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足+=﹣,求k的值.五.解答题(共2小题,满分18分,每小题9分)21.如图,等腰Rt△ABC中斜边AB=4,O是AB的中点,以O为圆心的半圆分别与两腰相切于点D、E,图中阴影部分的面积是多少?请你把它求出来.(结果用π表示)22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.六.解答题(共1小题,满分12分,每小题12分)23.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.参考答案一.选择题(共6小题,满分18分,每小题3分)1.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.2.【解答】解:把x=0代入方程(a+1)x2+x+a2﹣1=0得a2﹣1=0,解得a1=1,a2=﹣1,而a+1≠0,所以a=1.故选:A.3.【解答】解:二次函数y=x2+4x+3=(x+2)2﹣1,将其向右平移2个单位,再向上平移1个单位得到二次函数y=x2.故选:D.4.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.5.【解答】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD=,∴tan∠1=,∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴圆周角的度数是60°或120°.故选:D.6.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.二.填空题(共6小题,满分18分,每小题3分)7.【解答】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.8.【解答】解:将直线y=2x直线y=x向上平移2个单位长度,平移后直线的解析式为y=x+2.故答案为:y=x+2.9.【解答】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x﹣1=15,即=15,故答案为:=1510.【解答】解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180.故答案为180°.11.【解答】解:根据题意得△=(﹣5)2﹣4×2×m=0,解得m=.故答案为.12.【解答】解:连接OF,∵EF是⊙O切线,∴OF⊥EF,∵AB是直径,AB经过CD中点H,∴OH⊥EH,又∵∠AOF=2∠ACF=128°,在四边形EFOH中,∵∠OFE+∠OHE=180°∴∠E=180°﹣∠AOF=180°﹣128°=52°.三.解答题(共5小题,满分30分,每小题6分)13.【解答】解:(1)小明解答过程是从第一步开始出错的,因为把方程两边都加上1时,方程右边为1.故答案为一;不符合等式性质1;(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=±,所以x1=1+,x2=1﹣.14.【解答】解:(1)因为原方程有实数根,所以△=42﹣4m≥0,解得:m≤4,即当m≤4时,方程x2+4x+m=0有实数解.(2)设方程的另一个实数解为x2,那么有1+x2=﹣4,解得:x2=﹣5,m=1×(﹣5)=﹣5.15.【解答】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.16.【解答】解:(1)∵一、二、三、四这四个扇形的面积之比为1:3:5:1.,∴各个扇形的面积分别占整个圆面积的,∴各个扇形的圆心角的度数分别为,,(2)一、二、四这三个扇形的圆心角的度数之和是36°+36°+108°=180°.17.【解答】解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.四.解答题(共3小题,满分24分,每小题8分)18.【解答】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.19.【解答】解:(1)∵A(1,0),B(2,0),∴AB=1,∵四边形ABCD是正方形,∴AD=BC=CD=1,∴C(2,1),D(1,1);(2)如图,A′(0,1),B′(0,2),C′(﹣1,2),D′(﹣1,1);(3)如图,A″(﹣1,0),B″(﹣2,0),C″(﹣2,﹣1),D″(﹣1,﹣1).20.【解答】解:(1)∵关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根,∴△≥0,即[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣;(2)由根与系数的关系可得x1+x2=2k+1,x1x2=k2﹣2,由+=﹣可得:2(x1+x2)=﹣x1x2,∴2(2k+1)=﹣(k2﹣2),∴k=0或k=﹣4,∵k≥﹣,∴k=0.五.解答题(共2小题,满分18分,每小题9分)21.【解答】解:连接OE.∴AC=ABcos45°=2,∴OE⊥BC,OE∥AC.又OA=OB,则OE=BE=EC=AC=,∴S阴影=2(S△OBE﹣S扇形OEF)=2﹣.22.【解答】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.六.解答题(共1小题,满分12分,每小题12分)23.【解答】解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1
本文标题:江西省赣州市大余县2018-2019学年九年级数学上学期期末模拟试卷(pdf,含解析)
链接地址:https://www.777doc.com/doc-8359640 .html