您好,欢迎访问三七文档
第1页(共22页)2018-2019学年黑龙江省大庆市林甸县九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.2.王大伯要做一张如图所示的梯子,梯子共有7级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1=0.5m,最下面一级踏板的长度A7B7=0.8m.则A3B3踏板的长度为()A.0.6mB.0.65mC.0.7mD.0.75m3.在菱形ABCD中,两条对角线AC=6,BD=8,则此菱形的边长为()A.5B.6C.8D.104.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()第2页(共22页)A.32×20﹣32x﹣20x=540B.(32﹣x)(20﹣x)=540C.32x+20x=540D.(32﹣x)(20﹣x)+x2=5405.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4cm2,则阴影部分面积等于()A.2cm2B.1cm2C.cm2D.cm26.已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3B.1≤x≤3C.x>1D.x<37.若点(x1,y1),(x2,y2)都是反比例函数y=图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限8.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.29.如图,在△ABC中,已知点D,E分别是边AC,BC上的点,DE∥AB,且CE:EB=2:3,则DE:AB等于()第3页(共22页)A.2:3B.2:5C.3:5D.4:510.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)二.填空题(共8小题,满分24分,每小题3分)11.一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为.12.李明有红、黑、白3件运动上衣和白、黑2条运动短裤,则穿着“衣裤同色”的概率是.13.写一个反比例函数的解析式,使它的图象在第一、三象限:.14.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式.15.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是.16.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.第4页(共22页)其中正确结论的序号是.17.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.18.如图,正比例函数y=kx(k>0)与反比例函数的图象相交于A,C两点,过A作x轴的垂线交x轴于B,连接BC,则△ABC的面积为.三.解答题(共10小题,满分66分)19.用适当的方法解下列方程:x2﹣2x﹣4=0.第5页(共22页)20.某校为了了解八年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如图所示的统计图.已知从左至右前两组的频率和是0.12,第二、三、四组的频数比为4:17:15,跳绳次数不少于100次的同学占96%.结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次跳绳测试成绩最好的有5人,其中男生3人,女生2人,现在打算从中随机选出两位同学参加比赛,请你用列表法或画树状图的方法,求出所选两位同学恰好是一位男同学和一位女同学的概率.第6页(共22页)21.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)试确定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树;(4)设路灯距地面8米,小明身高1.6米在距离灯的底部20米处,沿NF所在的直线走14米到达点B时,求人影的长.第7页(共22页)22.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.第8页(共22页)23.为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为,自变量x的取值范为;药物燃烧后,y关于x的函数关系式为.(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?第9页(共22页)24.小明将1000元存入银行,定期一年,到期后他取出600元后,将剩下部分(包括利息)继续存入银行,定期还是一年,到期后全部取出,正好是550元,请问定期一年的利率是多少?25.关于x的一元二次方程(k﹣2)x2﹣2(k﹣1)x+k+1=0有两个不同的实数根是xl和x2.(1)求k的取值范围;(2)当k=﹣2时,求4x12+6x2的值.26.如图,已知反比例函数y1=(m≠0)的图象经过点A(﹣2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.第10页(共22页)27.如图,在矩形ABCD中,AB=6cm,BC=8cm,动点P从点A开始沿AC向点C以每秒2厘米的速度运动,同时动点Q从点C开始沿CB边向点B以每秒1厘米的速度运动.设运动的时间为t秒(0<t<5),△PQC的面积为Scm2.(1)求S与t之间函数关系式.(2)当t为何值时,△PQC的面积最大,最大面积是多少?(3)在P、Q的移动过程中,△PQC能否为直角三角形?若能,求出此时t的值;若不能,请说明理由.第11页(共22页)28.如图,在正方形ABCD中,点E,F分别是CB,BA延长线上的点,且BE=AF,连接DE,CF,CF交DE于点M,交AD于点H,过点E作EG⊥DE,使EG=DE,连接FG.(1)求证:四边形GECF是平行四边形;(2)若FA=2,=,求EG的长.第12页(共22页)参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.2.【解答】解:因为每相邻两级踏板之间的距离都相等,所以A4B4为梯形A1A7B7B1的中位线,根据梯形中位线定理,A4B4=(A1B1+A7B7)=(0.5+0.8)=0.65m.作A1C∥B1B4,则DB3=CB4=A1B1=0.5m,A4C=0.65m﹣0.50m=0.15m,于是=,=,解得A3D=0.10m.A3B3=0.10m+0.50m=0.60m.3.【解答】解:∵菱形对角线互相垂直平分∴△AOB为直角三角形,且AC=2AO,BD=2BO,∴AO=3,BO=4,∴AB==5,故选:A.第13页(共22页)4.【解答】解:设道路的宽为x,根据题意得(32﹣x)(20﹣x)=540.故选:B.5.【解答】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=4,∴S△BEF=1,即阴影部分的面积为1.故选:B.6.【解答】解:当1<x<3时,y1>y2.故选:A.7.【解答】解:反比例函数y=图象在第一、三象限,∵y1<0<y2,∴点(x1,y1)在第三象限的图象上,点(x2,y2)在第一象限的图象上,∴x1<x2,在每一个象限内,y随x的增大而减小,故选项B正确;故选:B.第14页(共22页)8.【解答】解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,∵S△ABC=AC•BC=AB•h,∴h==7.2,故选:D.9.【解答】解:∵DE∥AB,∴△CDE∽△CAB∵,∴=故选:B.10.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.二.填空题(共8小题,满分24分,每小题3分)11.【解答】解:第一次降价后的价格为60×(1﹣x),二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1﹣x)×(1﹣x),所以可列方程为60(1﹣x)2=48.6.12.【解答】解:根据题意画图如下:第15页(共22页)共有6种等情况数,“衣裤同色”的情况数有2种,所以所求的概率为=.故答案为:.13.【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:2.故答案为:y=等.14.【解答】解:∵某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空,∴该水池的蓄水量为8×6=48(立方米),∵Qt=48,∴t=.故答案为:t=.15.【解答】解:∵关于x的一元二次方程x2+4x﹣k=0有实数根,∴△=42﹣4×1×(﹣k)=16+4k≥0,解得:k≥﹣4.故答案为:k≥﹣4.16.【解答】解:①将组成方程组得,,由于x>0,解得,故A点坐标为(2,2).②由图可知,x>2时,y1>y2;③当x=1时,y1=1;y2=4,则BC=4﹣1=3;第16页(共22页)④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.可见,正确的结论为①③④.故答案为:①③④.17.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.18.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,依题意有S△A
本文标题:黑龙江省大庆市林甸县2018-2019学年九年级数学上学期期末模拟试卷(pdf)
链接地址:https://www.777doc.com/doc-8363360 .html