您好,欢迎访问三七文档
1第8讲曲线与方程基础知识整合1.曲线与方程在平面直角坐标系中,如果某曲线C(看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是□01这个方程的解;(2)以这个方程的解为坐标的点都在□02曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.曲线的交点设曲线C1的方程为F1(x,y)=0,曲线C2的方程为F2(x,y)=0,则C1,C2的交点坐标即为方程组F1x,y0,F2x,y0的□03实数解,若此方程组无解,则两曲线无交点.3.求动点的轨迹方程的一般步骤(1)建系——建立适当的坐标系;(2)设点——设轨迹上的任一点P(x,y);(3)列式——列出动点P所满足的关系式;(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x,y的方程式,并化简;(5)证明——证明所求方程即为符合条件的动点轨迹方程.1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.求轨迹问题常用的数学思想(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y的方程及函数关系.(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合.(3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.1.(2019·云南质量检测)已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为()A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)答案D2解析MN的中点为原点O,易知|OP|=12|MN|=2,∴P的轨迹是以原点O为圆心,2为半径的圆,除去与x轴的两个交点,即顶点P的轨迹方程为x2+y2=4(x≠±2),故选D.2.(2019·金华模拟)已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是()A.2x+y+1=0B.2x-y-5=0C.2x-y-1=0D.2x-y+5=0答案D解析设Q(x,y),则P为(-2-x,4-y),代入2x-y+3=0,得Q点的轨迹方程为2x-y+5=0.3.已知平面内有一条线段AB,其长度为4,动点P满足|PA|-|PB|=3,O为AB的中点,则|OP|的最小值为()A.1B.32C.2D.3答案B解析以AB中点为原点,中垂线为y轴建立直角坐标系,P点的轨迹为双曲线c=2,a=1.5,∴|OP|min=a=1.5.4.已知圆的方程为x2+y2=4,若抛物线过点A(-1,0),B(1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.答案x24+y23=1(y≠0)解析设抛物线焦点为F,过A,B,O作准线的垂线AA1,BB1,OO1,则|AA1|+|BB1|=2|OO1|=4,由抛物线定义得|AA1|+|BB1|=|FA|+|FB|,所以|FA|+|FB|=4,故F点的轨迹是以A,B为焦点,长轴长为4的椭圆(去掉长轴两端点),所以抛物线的焦点轨迹方程为x24+y23=1(y≠0).5.(2019·人大附中模拟)在平面直角坐标系xOy中,设点P(x,y),M(x,-4),以线段PM为直径的圆经过原点O.则动点P的轨迹方程为________.答案x2=4y解析由题意可得OP⊥OM,所以OP→·OM→=0,所以(x,y)·(x,-4)=0,即x2-4y=0,所以动点P的轨迹方程为x2=4y.6.(2019·武汉模拟)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=45|PD|.当P在圆上运动时,点M的轨迹C的方程为________.3答案x225+y216=1解析设点M的坐标为(x,y),点P的坐标为(xP,yP),由已知得xP=x,yP=54y,因为P在圆上,所以x2+54y2=25,即轨迹C的方程为x225+y216=1.核心考向突破考向一定义法求轨迹例1(2019·大庆模拟)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.解如图所示,设动圆M与圆C1及圆C2分别外切于点A和点B,则有|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.又|MA|=|MB|,所以|MC2|-|MC1|=|BC2|-|AC1|=3-1=2,即动点M到两定点C2,C1的距离的差是常数2,且2|C1C2|=6,|MC2||MC1|,故动圆圆心M的轨迹为以定点C2,C1为焦点的双曲线的左支,则2a=2,所以a=1.又c=3,则b2=c2-a2=8.设动圆圆心M的坐标为(x,y),则动圆圆心M的轨迹方程为x2-y28=1(x≤-1).触类旁通定义法求轨迹方程及其注意点4(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x或y进行限制.即时训练1.(2019·福建模拟)设动点P(x,y)(y≥0)到定点F(0,1)的距离比它到x轴的距离大1,记点P的轨迹为曲线C.(1)求点P的轨迹方程;(2)设圆M过点A(0,2),且圆心M在曲线C上,EG是圆M在x轴上截得的弦,试探究当M运动时,弦长|EG|是否为定值?为什么?解(1)依题意知,动点P到定点F(0,1)的距离等于P到直线y=-1的距离,故曲线C是以原点为顶点,F(0,1)为焦点的抛物线.∵p2=1,∴p=2,∴曲线C的方程是x2=4y.(2)设圆的圆心为M(a,b),∵圆M过点A(0,2),∴圆的方程为(x-a)2+(y-b)2=a2+(b-2)2.令y=0得x2-2ax+4b-4=0.设圆M与x轴的两交点分别为E(x1,0),G(x2,0),不妨设x1x2,由求根公式得x1=2a+4a2-16b+162,x2=2a-4a2-16b+162,∴x1-x2=4a2-16b+16.又∵点M(a,b)在抛物线x2=4y上,∴a2=4b,∴x1-x2=16=4,即|EG|=4,∴当M运动时,弦长|EG|为定值4.考向二直接法求轨迹方程角度1利用动点满足的关系式求轨迹例2在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足MB→∥OA→,MA→·AB→=MB→·BA→,M点的轨迹为曲线C.(1)求曲线C的方程;(2)P为曲线C上的动点,l为曲线C在P点处的切线,求O点到l距离的最小值.解(1)设M(x,y).由已知得B(x,-3),又A(0,-1),所以MA→=(-x,-1-y),MB→=(0,-3-y),AB→=(x,-2).再由题意可知(MA→+MB→)·AB→=0,即(-x,-4-2y)·(x,-2)=0,所以曲线C的方程为y=14x2-2.5(2)设P(x0,y0)为曲线C:y=14x2-2上一点,因为y′=12x,所以l的斜率为12x0,因此直线l的方程为y-y0=12x0(x-x0),即x0x-2y+2y0-x20=0,所以O点到l的距离d=|2y0-x20|x20+4.又y0=14x20-2,所以d=12x20+4x20+4=12x20+4+4x20+4≥2,当x0=0时取等号,所以O点到l距离的最小值为2.角度2无明确等量关系求轨迹方程例3已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的平分线,证明直线l过定点.解(1)如图,设动圆圆心为O1(x,y),由题意得|O1A|=|O1M|,当O1不在y轴上时,过O1作O1H⊥MN交MN于点H,则点H是MN的中点,∴|O1M|=x2+42,又|O1A|=x-42+y2,∴x-42+y2=x2+42,化简得y2=8x(x≠0).又当O1在y轴上时,O1与O重合,点O1的坐标为(0,0)也满足方程y2=8x,∴动圆圆心的轨迹C的方程为y2=8x.(2)证明:由题意,设直线l的方程为y=kx+b(k≠0),P(x1,y1),Q(x2,y2),将y=kx+b代入y2=8x中,得6k2x2+(2bk-8)x+b2=0.其中Δ=-32kb+640.由根与系数的关系,得x1+x2=8-2bkk2,①x1x2=b2k2,②∵x轴是∠PBQ的平分线,所以y1x1+1=-y2x2+1,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0,③将①②代入③,得2kb2+(k+b)(8-2bk)+2k2b=0,∴k=-b,此时Δ0,∴直线l的方程为y=k(x-1),即直线l过定点(1,0).触类旁通直接法求轨迹方程应注意的问题直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略.如果给出了直角坐标系则可省去建系这一步.求出曲线的方程后还需注意检验方程的纯粹性和完备性.即时训练2.已知|AB|=2,动点P满足|PA|=2|PB|,求动点P的轨迹方程.解如图所示,以AB的中点O为原点,直线AB为x轴建立如图所示的平面直角坐标系,则A(-1,0),B(1,0).设P(x,y),因为|PA|=2|PB|,7所以x+12+y2=2x-12+y2,整理得x2+y2-103x+1=0,即x-532+y2=169.所以动点P的轨迹方程为x-532+y2=169.3.如图,过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴非负半轴于A点,l2交y轴非负半轴于B点,求线段AB的中点M的轨迹方程.解设点M坐标为(x,y).因为M(x,y)为线段AB的中点,所以点A,B的坐标分别为A(2x,0),B(0,2y).当x≠1时,因为l1⊥l2,且l1,l2过点P(2,4),所以kPA·kPB=-1,即0-42x-2·2y-40-2=-1(x≠1),化简得x+2y-5=0(x≠1).当x=1时,A,B分别为(2,0),(0,4),所以线段AB的中点为(1,2),满足方程x+2y-5=0(x≥0,y≥0).综上得M的轨迹方程为x+2y-5=0(x≥0,y≥0).考向三代入法求轨迹方程例4(2017·全国卷Ⅱ)设O为坐标原点,动点M在椭圆C:x22+y2=1上,过M作x轴的垂线,垂足为N,点P满足NP→=2NM→.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且OP→·PQ→=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.解(1)设P(x,y),M(x0,y0),则N(x0,0),NP→=(x-x0,y),NM→=(0,y0).由NP→=2NM→得x0=x,y0=22y.8因为点M(x0,y0)在C上,所以x22+y22=1.因此点P的轨迹方程为x2+y2=2.(2)证明:由题意知F(-1,0).设Q(-3,t),P(m,n),则OQ→=(-3,t),PF→=(-1-m,-n),OQ→·PF→=3+3m-tn,OP→=(m,n),PQ→=(-3-m,t-n).由OP→·PQ→=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0.所以OQ→·PF→=0,即OQ→⊥PF→.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.触类旁通代入法求轨迹方程的四个步骤(1)设出所求动点坐标P(x,y).2Px,yQx′,y.3P,Q两坐标间的关系,并表示出x′,y′.4x′,y′代入已知曲线方程中
本文标题:2020版高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程教案 理(含解析)新人教A版
链接地址:https://www.777doc.com/doc-8463156 .html