您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2020版高中数学 第三章 概率 3.1.3 概率的基本性质学案(含解析)新人教A版必修3
13.1.3概率的基本性质学习目标1.了解互斥事件概率的加法公式.2.理解事件的关系与运算.3.会用对立事件的特征求概率.知识点一事件的关系与运算1.事件的关系定义表示法图示包含关系一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系A⊆B且B⊆AA=B2.关于事件的运算定义表示法图示并事件若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)知识点二互斥与对立互斥事件和对立事件的定义互斥事件定义若A∩B为不可能事件,则称事件A与事件B互斥符号A∩B=∅图示注意事项例如,在掷骰子试验中,记C1={出现1点},C2={出现2点},则C1与C2互斥2对立事件定义若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件符号A∩B=∅,且A∪B=Ω图示注意事项A的对立事件一般记作A知识点三概率的基本性质概率的几个基本性质1.概率的取值范围为[0,1].2.必然事件的概率为1,不可能事件的概率为0.3.概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).特别地,若A与B为对立事件,则P(A)=1-P(B).P(A∪B)=1,P(A∩B)=0.1.若两个事件是互斥事件,则这两个事件是对立事件.(×)2.若两个事件是对立事件,则这两个事件也是互斥事件.(√)3.若两个事件是对立事件,则这两个事件概率之和为1.(√)题型一事件关系的判断例1从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各10张)中,任取一张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.判断上面给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.解(1)是互斥事件,不是对立事件.理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.(2)既是互斥事件,又是对立事件.理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌”,两个事件不3可能同时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件.(3)不是互斥事件,当然不可能是对立事件.理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得牌点数为10,因此,二者不是互斥事件,当然不可能是对立事件.反思感悟(1)要判断两个事件是不是互斥事件,只需要分别找出各个事件包含的所有结果,看它们之间能不能同时发生.在互斥的前提下,看两个事件的并事件是否为必然事件,从而可判断是否为对立事件.(2)考虑事件的结果间是否有交事件.可考虑利用Venn图分析,对于较难判断的关系,也可考虑列出全部结果,再进行分析.跟踪训练1(1)从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球(2)一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.两次都中靶D.两次都不中靶答案(1)D(2)D解析(1)根据互斥事件与对立事件的定义判断.A中两事件不是互斥事件,事件“三个球都是红球”是两事件的交事件;B中两事件是对立事件;C中两事件能同时发生,如“恰有一个红球和两个白球”,故不是互斥事件;D中两事件是互斥而不对立事件.(2)A,B,C中的事件均能与事件“至少有一次中靶”同时发生,故A,B,C错误,选D.题型二事件的运算例2在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;(2)利用和事件的定义,判断上述哪些事件是和事件.解(1)因为事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3.同理可得,事件E包含事件C1,C2,C3,C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含4事件C2,C4,C6;事件G包含事件C1,C3,C5.且易知事件C1与事件D1相等,即C1=D1.(2)因为事件D2={出现的点数大于3}={出现4点或出现5点或出现6点},所以D2=C4∪C5∪C6(或D2=C4+C5+C6).同理可得,D3=C1+C2+C3+C4,E=C1+C2+C3+C4+C5+C6,F=C2+C4+C6,G=C1+C3+C5.反思感悟事件间运算方法(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.跟踪训练2盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有一个红球,两个白球},事件B={3个球中有两个红球,一个白球},事件C={3个球中至少有一个红球},事件D={3个球中既有红球又有白球}.则:(1)事件D与事件A,B是什么样的运算关系?(2)事件C与事件A的交事件是什么事件?解(1)对于事件D,可能的结果为1个红球2个白球或2个红球1个白球,故D=A∪B.(2)对于事件C,可能的结果为1个红球2个白球,2个红球1个白球或3个红球,故C∩A=A.题型三用互斥、对立事件求概率例3某射击运动员在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.1,0.2,0.3,0.3,0.1.计算这个运动员在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率.解设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A,B,C,D,E,则(1)P(A+B)=P(A)+P(B)=0.1+0.2=0.3.所以射中10环或9环的概率为0.3.(2)因为射中7环以下的概率为0.1,所以由对立事件的概率公式得,至少射中7环的概率为1-0.1=0.9.反思感悟互斥事件、对立事件概率的求解方法(1)互斥事件的概率的加法公式P(A∪B)=P(A)+P(B).(2)当求解的问题中有“至多”“至少”“最少”等关键词语时,常常考虑其反面,通过求其反面,然后转化为所求问题.5跟踪训练3甲、乙两人下棋,和棋的概率是12,乙获胜的概率为13,求:(1)甲获胜的概率;(2)甲不输的概率.解(1)“甲获胜”可看成是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率为1-12-13=16.(2)方法一“甲不输”可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P(甲不输)=16+12=23.方法二“甲不输”可看成是“乙获胜”的对立事件,所以P(甲不输)=1-13=23,故甲不输的概率为23.用方程的思想求概率典例袋中有外形、质量完全相同的红球、黑球、黄球、绿球共12个,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512.(1)试分别求得到黑球、黄球、绿球的概率;(2)从中任取一球,求得到的不是红球或绿球的概率.解(1)从袋中任取一球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为A,B,C,D,则P(A)=13,P(B∪C)=P(B)+P(C)=512,P(C∪D)=P(C)+P(D)=512,P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-13=23.联立PB+PC=512,PC+PD=512,PB+PC+PD=23,解得P(B)=14,P(C)=16,P(D)=14,故得到黑球,得到黄球,得到绿球的概率分别为14,16,14.6(2)事件“得到红球或绿球”可表示为事件A∪D,由(1)及互斥事件的概率加法公式得P(A∪D)=P(A)+P(D)=13+14=712,故得到的不是红球或绿球的概率P=1-P(A∪D)=1-712=512.[素养评析](1)求概率可以考虑用对立事件、互斥事件的概率加法公式求解.如果有多个待求量,可以列方程组求解.(2)理解运算对策,选择运算方法,求得运算结果,这都是数学核心素养数学运算的具体体现.1.从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”答案C解析A中两个事件能同时发生,故不互斥;同样,B中两个事件也可同时发生,故不互斥;D中两个事件是对立的,故选C.2.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是()A.0.42B.0.28C.0.3D.0.7答案C解析∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1-0.42-0.28=0.3,故选C.3.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是()A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+C与B+D是互斥事件,但不是对立事件D.A与B+C+D是互斥事件,也是对立事件答案D解析由于A,B,C,D彼此互斥,且由P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=1,知A+B+C+D是一个必然事件,故其事件的关系如图所示.由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立7事件,故只有D中的说法正确.4.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.答案1928解析由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.5.由经验得知,在某商场付款处排队等候付款的人数及其概率如下:排队人数012345人及以上概率0.10.150.30.310.10.04则至多2个人排队的概率为________.答案0.55解析P=0.1+0.15+0.3=0.55.1.互斥事件和对立事件都是针对两个事件而言的,它们两者之间既有区别又有联系.在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能两个都发生;而两个对立事件必有一个发生,但是不可能两个事件同时发生,也不可能两个事件都不发生.所以两个事件互斥,它们未必对立;反之两个事件对立,它们一定互斥.2.互斥事件概率的加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率的加法公式P(A∪B)=P(A)+P(B).3.求复杂事件的概率通常有两种方法(1)将所求事件转化成彼此互斥事件的并事件;(2)先求其对立事件的概率,再求所求事件的概率.一、选择题1.袋内装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的
本文标题:2020版高中数学 第三章 概率 3.1.3 概率的基本性质学案(含解析)新人教A版必修3
链接地址:https://www.777doc.com/doc-8466525 .html