您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019-2020学年高中数学 课时跟踪检测(七)平行关系的性质 北师大版必修2
-1-课时跟踪检测(七)平行关系的性质一、基本能力达标1.已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b的位置关系是()A.平行B.相交C.异面D.不确定解析:选A由面面平行的性质定理可知选项A正确.2.若直线l∥平面α,则过l作一组平面与α相交,记所得的交线分别为a,b,c,…,那么这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点解析:选A因为直线l∥平面α,所以根据直线与平面平行的性质知l∥a,l∥b,l∥c,…,所以a∥b∥c∥…,故选A.3.如图1,在直角梯形ABCD中,AB∥CD,∠BAD=90°,点E为线段AB上异于A,B的点,点F为线段CD上异于C,D的点,且EF∥DA,沿EF将面EBCF折起,如图2,则下列结论正确的是()A.AB∥CDB.AB∥平面DFCC.A,B,C,D四点共面D.CE与DF所成的角为直角解析:选B在图2中,∵BE∥CF,BE⃘平面DFC,CF平面DFC,∴BE∥平面DFC,同理AE∥平面DFC.又BE∩AE=E,∴平面ABE∥平面DFC.又AB平面ABE,∴AB∥平面DFC.故选B.4.已知平面α∥平面β,aα,bβ,则直线a,b的位置关系是()A.平行B.相交C.异面D.平行或异面-2-解析:选D∵平面α∥平面β,∴平面α与平面β没有公共点.∵aα,bβ,∴直线a,b没有公共点,∴直线a,b的位置关系是平行或异面.5.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA,PB,PC于A′,B′,C′,若PA′∶AA′=2∶3,则△A′B′C′与△ABC面积的比为()A.2∶5B.3∶8C.4∶9D.4∶25解析:选D∵平面α∥平面ABC,平面PAB∩α=A′B′,平面PAB∩平面ABC=AB,∴A′B′∥AB.又∵PA′∶AA′=2∶3,∴A′B′∶AB=PA′∶PA=2∶5.同理B′C′∶BC=A′C′∶AC=2∶5.∴△A′B′C′与△ABC相似,∴S△A′B′C′∶S△ABC=4∶25.6.如图,在正方体ABCDA1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.解析:∵在正方体ABCDA1B1C1D1中,AB=2,∴AC=22.又E为AD的中点,EF∥平面AB1C,EF平面ADC,平面ADC∩平面AB1C=AC,∴EF∥AC,∴F为DC的中点,∴EF=12AC=2.答案:27.过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析:记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共有6条.答案:68.给出下列说法:①若平面α∥平面β,平面β∥平面γ,则平面α∥平面γ;②若平面α∥平面β,直线a与α相交,则a与β相交;③若平面α∥平面β,P∈α,PQ∥β,则PQα;④若直线a∥平面β,直线b∥平面α,且α∥β,则a∥b.其中正确说法的序号是________.解析:①中平面α与γ也可能重合,故①不正确.假设直线a与平面β平行或直线aβ,则由平面α∥平面β,知aα或a∥α,这与直线a与α相交矛盾,所以a与β相交,-3-②正确.如图,过直线PQ作平面γ,γ∩α=a,γ∩β=b,由α∥β,得a∥b.因为PQ∥β,PQγ,所以PQ∥b.因为过直线外一点有且只有一条直线与已知直线平行,所以直线a与直线PQ重合.因为aα,所以PQα,③正确.若直线a∥平面β,直线b∥平面α,且α∥β,则a与b平行、相交或异面都有可能,④不正确.答案:②③9.如图所示,四边形ABCD是平行四边形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.求证:四边形BCFE是梯形.证明:因为四边形ABCD为平行四边形,所以BC∥AD,因为AD平面PAD,BC⃘平面PAD,所以BC∥平面PAD.因为平面BCFE∩平面PAD=EF,所以BC∥EF.因为AD=BC,AD≠EF,所以BC≠EF,所以四边形BCFE是梯形.10.如图,在三棱柱ABCA1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.求证:N为AC的中点.证明:∵平面AB1M∥平面BC1N,平面ACC1A1∩平面AB1M=AM,平面BC1N∩平面ACC1A1=C1N,∴C1N∥AM,又AC∥A1C1,∴四边形ANC1M为平行四边形,∴AN=C1M=12A1C1=12AC,∴N为AC的中点.二、综合能力提升1.如图,在三棱柱ABCA1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面三角形ABC的边BC,AC于点E,F,则()-4-A.MF∥NEB.四边形MNEF为梯形C.四边形MNEF为平行四边形D.A1B1∥NE解析:选B∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB1,∴AM綊BN,∴MN綊AB.又MN⃘平面ABC,AB平面ABC,∴MN∥平面ABC.又MN平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中EF≠AB,∴EF≠MN,∴四边形MNEF为梯形.故选B.2.如图所示的三棱柱ABCA1B1C1中,过A1B1的平面与平面ABC交于直线DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选B因为A1B1∥AB,AB平面ABC,A1B1⃘平面ABC,所以A1B1∥平面ABC.又A1B1平面A1B1ED,平面A1B1ED∩平面ABC=DE,所以DE∥A1B1.又AB∥A1B1,所以DE∥AB.3.在正方体ABCDA1B1C1D1中,若经过D1B的平面分别交AA1和CC1于点E,F,则四边形D1EBF的形状是()A.矩形B.菱形C.平行四边形D.正方形解析:选C因为平面和左右两个平行侧面分别交于ED1,BF,所以ED1∥BF,同理D1F∥EB,所以四边形D1EBF是平行四边形.4.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD∥平面EFGH时,下列结论中正确的是()A.E,F,G,H一定是各边的中点B.G,H一定是CD,DA的中点C.BE∶EA=BF∶FC,且DH∶HA=DG∶GCD.AE∶EB=AH∶HD,且BF∶FC=DG∶GC解析:选D由于BD∥平面EFGH,由线面平行的性质定理,有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.5.如图,四边形ABDC是梯形,AB∥CD,且AB∥平面α,M是AC的中点,BD与平面α交于点N,AB=4,CD=6,则MN=________.解析:∵AB∥平面α,AB平面ABDC,平面ABDC∩平面α=MN,-5-∴AB∥MN.又M是AC的中点,∴MN是梯形ABDC的中位线,故MN=12(AB+CD)=5.答案:56.如图,四边形ABCD是空间四边形,E,F,G,H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,则当四边形EFGH是菱形时,AE∶EB=________.解析:因为AC∥平面EFGH,所以EF∥AC,HG∥AC.因为BD∥平面EFGH,所以EH∥BD,FG∥BD.所以EF=HG=BEBA·m,EH=FG=AEAB·n.因为四边形EFGH是菱形,所以BEAB·m=AEAB·n,所以AE∶EB=m∶n.答案:m∶n7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,P为平面ABC外一点,E,F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明.证明:直线l∥平面PAC,证明如下:因为E,F分别是PA,PC的中点,所以EF∥AC.又EF⃘平面ABC,且AC平面ABC,所以EF∥平面ABC.而EF平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⃘平面PAC,EF平面PAC,所以l∥平面PAC.探究应用题8.如图所示,在三棱柱ABCA1B1C1中,D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.解:存在点E,且E为AB的中点时,DE∥平面AB1C1,下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1.因为AB的中点为E,连接EF,则EF∥AB1,B1C1∩AB1=B1,DF∩EF=F,-6-所以平面DEF∥平面AB1C1.又DE平面DEF,∴DE∥平面AB1C1.
本文标题:2019-2020学年高中数学 课时跟踪检测(七)平行关系的性质 北师大版必修2
链接地址:https://www.777doc.com/doc-8471203 .html