您好,欢迎访问三七文档
-1-第二章点、直线、平面之间的位置关系检测试题(时间:120分钟满分:150分)选题明细表知识点、方法题号点线面位置关系1,2,4,9,13,17线面垂直、平行的判定与性质3,5,6,10,18,19空间角7,8,14,20,21综合问题11,12,15,16,22一、选择题(本大题共12小题,每小题5分,共60分)1.直线l与平面α不平行,则(C)(A)l与α相交(B)l⊂α(C)l与α相交或l⊂α(D)以上结论都不对解析:直线与平面的位置关系有:直线在平面内、直线与平面平行、直线与平面相交.因为直线l与平面α不平行,所以l与α相交或l⊂α.2.下列推理不正确的是(C)(A)A∈b,A∈β,B∈b,B∈β⇒b⊂β(B)M∈α,M∈β,N∈α,N∈β⇒α∩β=直线MN(C)直线m不在α内,A∈m⇒A∉α(D)A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合解析:由空间中点线面的位置关系知选C.3.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是(D)(A)若α,β垂直于同一平面,则α与β平行(B)若m,n平行于同一平面,则m与n平行(C)若α,β不平行,则在α内不存在与β平行的直线(D)若m,n不平行,则m与n不可能垂直于同一平面解析:A项,α,β可能相交,故错误;-2-B项,直线m,n的位置关系不确定,可能相交,平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.4.α,β是两个不重合的平面,在下列条件中,可判定α∥β的是(D)(A)α,β都与平面γ垂直(B)α内不共线的三点到β的距离相等(C)l,m是α内的两条直线,且l∥β,m∥β(D)l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β解析:对于D,设过l和α内的一点的平面与平面α的交线为l′,因为l∥α,所以l′∥l.又因为l∥β,l′⊄β,所以l′∥β.设过m和α内的一点的平面与α的交线为m′,同理可证m′∥β.因为m与l是异面直线,所以m′与l′相交,所以α∥β.5.如图,四棱锥PABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则(B)(A)MN∥PD(B)MN∥PA(C)MN∥AD(D)以上均有可能解析:四棱锥PABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,MN⊂平面PAC,平面PAC∩平面PAD=PA,由直线与平面平行的性质定理可得:MN∥PA.故选B.6.在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则(B)(A)AE⊥CC1(B)AE⊥B1D1(C)AE⊥BC(D)AE⊥CD解析:如图所示:-3-连接AC,BD,因为ABCDA1B1C1D1是正方体,所以四边形ABCD是正方形,AC⊥BD,CE⊥平面ABCD,所以BD⊥AC,BD⊥CE,而AC∩CE=C,故BD⊥平面ACE,因为BD∥B1D1,且B1D1⊄平面ACE,故B1D1⊥平面ACE,故B1D1⊥AE,故选B.7.在正方体ABCDA1B1C1D1中,异面直线A1C1与B1C所成角的余弦值为(B)(A)0(B)(C)(D)解析:连接A1D,C1D,如图所示,A1D∥B1C,所以∠DA1C1是异面直线A1C1与B1C所成角(或所成角的补角),因为A1D=A1C1=DC1,所以∠C1A1D=60°,所以异面直线A1C1与B1C所成角的余弦值为cos60°=.故选B.8.如图,在直三棱柱ABCA1B1C1中,D为A1B1的中点,AB=BC=BB1=2,AC=-4-2,则异面直线BD与AC所成的角为(C)(A)30°(B)45°(C)60°(D)90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角.由条件可知BD=DE=EB=,所以∠BDE=60°,故选C.9.如图所示,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是(A)(A)A,M,O三点共线(B)A,M,O,A1不共面(C)A,M,C,O不共面(D)B,B1,O,M共面解析:连接A1C1,AC,则A1C1∥AC,所以A,C,C1,A1四点共面,-5-所以A1C⊂平面ACC1A1.因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,所以A,M,O三点共线,故选A.10.如图,在下列四个正方体ABCDA1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是(D)解析:如图在正方体中,E,F,G,M,N,Q均为所在棱的中点,是一个平面图形,直线BD1与平面EFMNQG垂直,并且选项A,B,C中的平面与这个平面重合,满足题意,只有选项D直线BD1与平面EFG不垂直.故选D.11.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面ABCD为菱形,M是PC上的一个动点,若要使得平面MBD⊥平面PCD,则应补充的一个条件可以是(B)(A)MD⊥MB(B)MD⊥PC(C)AB⊥AD-6-(D)M是棱PC的中点解析:因为在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,所以BD⊥PA,BD⊥AC,因为PA∩AC=A,所以BD⊥平面PAC,所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,所以平面MBD⊥平面PCD.故选B.12.如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是(C)(A)平面BCE⊥平面ABN(B)MC⊥AN(C)平面CMN⊥平面AMN(D)平面BDE∥平面AMN解析:分别过A,C作平面ABCD的垂线AP,CQ,使得AP=CQ=1,连接PM,PN,QM,QN,将几何体补成棱长为1的正方体.因为BC⊥平面ABN,BC⊂平面BCE,所以平面BCE⊥平面ABN,故A正确;-7-连接PB,则PB∥MC,显然PB⊥AN,所以MC⊥AN,故B正确;取MN的中点F,连接AF,CF,AC.因为△AMN和△CMN都是边长为的等边三角形,所以AF⊥MN,CF⊥MN,所以∠AFC为二面角AMNC的平面角,因为AF=CF=,AC=,所以AF2+CF2≠AC2,即∠AFC≠,所以平面CMN与平面AMN不垂直,故C错误;因为DE∥AN,MN∥BD,所以平面BDE∥平面AMN,故D正确.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若m⊂β,n⊂β,m∥α,n∥α,则α∥β;②若α∥β,l⊂β,则l∥α;③若l⊥m,l⊥n,则m∥n;④若l⊥α,l∥β,则α⊥β.其中真命题的序号是.解析:由α,β为两个不重合的平面,l,m,n为两两不重合的直线,知:在①中,若m⊂β,n⊂β,m∥α,n∥α,则α与β相交或平行,故①错误;-8-在②中,若α∥β,l⊂β,则由面面平行的性质定理得l∥α,故②正确;在③中,若l⊥m,l⊥n,则m与n相交、平行或异面,故③错误;在④中,若l⊥α,l∥β,则由面面垂直的判定定理得α⊥β,故④正确.答案:②④14.如图,圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点.则异面直线SA与PD所成角的正切值为.解析:连接PO,则PO∥SA,PO==,所以∠OPD即为异面直线SA与PD所成的角,且△OPD为直角三角形,∠POD为直角,所以tan∠OPD===.答案:15.在空间四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,对角线AC=BD=2,且AC⊥BD,则四边形EFGH的面积为.解析:因为点E,H分别为四边形ABCD的边AB,AD的中点,所以EH∥BD,且EH=BD=1.同理求得FG∥BD,且FG=1,-9-所以EH∥FG,EH=FG,又因为AC⊥BD,AC=BD=2,所以EF⊥EH,EF=EH.所以四边形EFGH是正方形.所以四边形EFGH的面积为EF·EH=1.答案:116.在正方体ABCDA1B1C1D1中,下列结论中正确的序号有.①AC∥平面A1BC1;②AC⊥BD1;③AC1⊥平面CB1D1;④异面直线A1D与B1C1所成的角为45°.解析:①AC∥A1C1,AC⊄平面A1BC1,A1C1⊂平面A1BC1;所以AC∥平面A1BC1.①正确;②因为AC⊥BD,AC⊥DD1,所以AC⊥平面BDD1B1,所以AC⊥BD1,②正确;③在正方体ABCDA1B1C1D1中,A1C1⊥B1D1,B1D1⊥AA1,又A1C1∩AA1=A1,则B1D1⊥平面A1AC1,又AC1⊂平面A1AC1,所以B1D1⊥AC1,同理得B1C⊥AC1,又B1D∩B1C=B,所以AC1⊥平面CB1D1,所以③正确.④如图,∠CB1C1等于异面直线A1D与B1C1所成的角,由正方形中BB1C1C中可得∠CB1C1为45°,因此④正确.-10-答案:①②③④三、解答题(共70分)17.(本小题满分10分)如图,空间四边形ABCD中,E,F分别是AD,AB的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设FG与HE交于点P,求证:P,A,C三点共线.证明:(1)△ABD中,因为E,F分别为AD,AB中点,所以EF∥BD.△CBD中,BG∶GC=DH∶HC=1∶2,所以GH∥BD,所以EF∥GH(平行线公理),所以E,F,G,H四点共面.(2)因为FG∩HE=P,P∈FG,P∈HE,所以P∈平面ABC,P∈平面ADC,又平面ABC∩平面ADC=AC,所以P∈直线AC.所以P,A,C三点共线.18.(本小题满分12分)如图,在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC,AB=BC,O为AC中点.(1)证明:A1O⊥BC;(2)若E为BC1的中点,求证:OE∥平面A1ABB1.-11-证明:(1)因为在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC,O为AC中点.所以A1O⊥AC,又平面AA1C1C∩底面ABC=AC,所以A1O⊥底面ABC,因为BC⊂底面ABC,所以A1O⊥BC.(2)连接AB1,连接CB1交BC1于点E,连接OE,则E为CB1的中点,所以OE∥AB1,因为AB1⊂平面A1ABB1,OE⊄平面A1ABB1,所以OE∥平面A1ABB1.19.(本小题满分12分)如图所示的多面体中,底面ABCD为正方形,△GAD为等边三角形,BF⊥平面ABCD,∠GDC=90°,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.(1)求证:AP⊥平面GCD;(2)求证:平面ADG∥平面FBC.证明:(1)因为△GAD是等边三角形,点P为线段GD的中点,故AP⊥GD.因为AD⊥CD,GD⊥CD,且AD∩GD=D,AD,GD⊂平面GAD,故CD⊥平面GAD,又AP⊂平面GAD,故CD⊥AP,又CD∩GD=D,CD,GD⊂平面GCD,故AP⊥平面GCD.(2)因为BF⊥平面ABCD,-12-所以BF⊥CD,因为BC⊥CD,BF∩BC=B,BF,BC⊂平面FBC,所以CD⊥平面FBC,由(1)知CD⊥平面GAD,所以平面ADG∥平面FBC.20.(本小题满分12分)如图,在四棱锥ABCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(1)证明:平面ABD⊥平面ABC;(2)求直线AD与平面ACE所成的角的正弦值.(1)证明:取CD的中点M,连接BM,可得四边形BMDE是正方形.BC2=BM2+M
本文标题:2019-2020学年高中数学 第二章 点、直线、平面之间的位置关系检测试题 新人教A版必修2
链接地址:https://www.777doc.com/doc-8479670 .html