您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2021版高考数学一轮复习 第六章 数列 第1讲 数列的概念及简单表示法教案 文 新人教A版
1第1讲数列的概念及简单表示法一、知识梳理1.数列的有关概念(1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.(2)数列的分类分类标准类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列an+1>an其中n∈N*递减数列an+1<an常数列an+1=an按其他标准分类有界数列存在正数M,使|an|≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列周期数列对n∈N*,存在正整数常数k,使an+k=an(3)数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析式法.2.数列的通项公式(1)数列的通项公式如果数列{an}的第n项与序号n之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.2(2)已知数列{an}的前n项和Sn,则an=S1,n=1,Sn-Sn-1,n≥2.常用结论1.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在正整数集或其子集{1,2,3,…,n}上的函数,当自变量依次从小到大取值时所对应的一列函数值.2.在数列{an}中,若an最大,则an≥an-1,an≥an+1,若an最小,则an≤an-1,an≤an+1.二、习题改编1.(必修5P33A组T4改编)在数列{an}中,a1=1,an=1+(-1)nan-1(n≥2),则a5等于()A.32B.53C.85D.23解析:选D.a2=1+(-1)2a1=2,a3=1+(-1)3a2=12,a4=1+(-1)4a3=3,a5=1+(-1)5a4=23.2.(必修5P33A组T5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式an=.答案:5n-4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.()(2)所有数列的第n项都能使用通项公式表示.()(3)数列{an}和集合{a1,a2,a3,…,an}是一回事.()(4)若数列用图象表示,则从图象上看都是一群孤立的点.()(5)一个确定的数列,它的通项公式只有一个.()(6)若数列{an}的前n项和为Sn,则对∀n∈N*,都有an=Sn-Sn-1.()答案:(1)×(2)×(3)×(4)√(5)×(6)×3二、易错纠偏常见误区(1)忽视数列是特殊的函数,其自变量为正整数集N*或其子集{1,2,…,n};(2)根据Sn求an时忽视对n=1的验证.1.在数列-1,0,19,18,…,n-2n2中,0.08是它的第项.解析:依题意得n-2n2=225,解得n=10或n=52(舍).答案:102.已知Sn=2n+3,则an=.解析:因为Sn=2n+3,那么当n=1时,a1=S1=21+3=5;当n≥2时,an=Sn-Sn-1=2n+3-(2n-1+3)=2n-1(*).由于a1=5不满足(*)式,所以an=5,n=1,2n-1,n≥2.答案:5,n=1,2n-1,n≥2由数列的前几项求数列的通项公式(师生共研)(1)数列1,3,6,10,15,…的一个通项公式是()A.an=n2-(n-1)B.an=n2-1C.an=n(n+1)2D.an=n(n-1)2(2)已知数列{an}为12,14,-58,1316,-2932,6164,…,则数列{an}的一个通项公式是.【解析】(1)设此数列为{an},则由题意可得a1=1,a2=3,a3=6,a4=10,a5=15,…仔细观察数列1,3,6,10,15,…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4.…所以第n项为1+2+3+4+5+…+n=n(n+1)2,所以数列1,3,6,10,15,…的通项公式an=n(n+1)2.(2)各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子数比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式可以为an=(-1)n·2n-32n.4【答案】(1)C(2)an=(-1)n·2n-32n解决此类问题,需抓住下面的特征:(1)各项的符号特征,通过(-1)n或(-1)n+1来调节正负项.(2)考虑对分子、分母各个击破或寻找分子、分母之间的关系.(3)相邻项(或其绝对值)的变化特征.(4)拆项、添项后的特征.(5)通过通分等方法变化后,观察是否有规律.[注意]根据数列的前几项求其通项公式其实是利用了不完全归纳法,蕴含着“从特殊到一般”的数学思想,由不完全归纳法得出的结果不一定是准确的!1.数列{an}的前4项是32,1,710,917,则这个数列的一个通项公式是an=.解析:数列{an}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故an=2n+1n2+1.答案:2n+1n2+12.数列3,7,11,15,…的一个通项公式是.解析:因为7-3=11-7=15-11=4,即a2n-a2n-1=4,所以a2n=3+(n-1)×4=4n-1,所以an=4n-1.答案:an=4n-1由an与Sn的关系求通项公式an(师生共研)(1)(2020·湖南三市联考)设数列{an}的前n项和为Sn,且Sn=a1(4n-1)3,若a4=32,则a1的值为()A.12B.14C.18D.116(2)设数列{an}满足a1+3a2+…+(2n-1)an=2n,则a1=,{an}的通项公式为.5【解析】(1)因为Sn=a1(4n-1)3,a4=32,所以S4-S3=255a13-63a13=32,所以a1=12,故选A.(2)数列{an}满足a1+3a2+…+(2n-1)an=2n,当n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1),所以(2n-1)an=2,所以an=22n-1.当n=1时,a1=2,上式也成立.所以an=22n-1.【答案】(1)A(2)2an=22n-1(1)已知Sn求an的三个步骤①先利用a1=S1求出a1;②用n-1替换Sn中的n得到一个新的关系式,利用an=Sn-Sn-1(n≥2)便可求出当n≥2时an的表达式;③注意检验n=1时的表达式是否可以与n≥2的表达式合并.(2)Sn与an关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化.①利用an=Sn-Sn-1(n≥2)转化为只含Sn,Sn-1的关系式,再求解;②利用Sn-Sn-1=an(n≥2)转化为只含an,an-1的关系式,再求解.1.已知数列{an}的前n项和Sn=n2+2n+1(n∈N*),则an=.解析:当n≥2时,an=Sn-Sn-1=2n+1;当n=1时,a1=S1=4≠2×1+1.所以an=4,n=1,2n+1,n≥2.答案:4,n=1,2n+1,n≥22.若数列{an}的前n项和Sn=23an+13,则{an}的通项公式an=.6解析:由Sn=23an+13,得当n≥2时,Sn-1=23an-1+13,两式相减,整理得an=-2an-1,又当n=1时,S1=a1=23a1+13,所以a1=1,所以{an}是首项为1,公比为-2的等比数列,故an=(-2)n-1.答案:(-2)n-1由递推关系求数列的通项公式(师生共研)分别求出满足下列条件的数列的通项公式.(1)a1=0,an+1=an+(2n-1)(n∈N*);(2)a1=1,an+1=2nan(n∈N*);(3)a1=1,an+1=3an+2(n∈N*).【解】(1)an=a1+(a2-a1)+…+(an-an-1)=0+1+3+…+(2n-5)+(2n-3)=(n-1)2,所以数列的通项公式为an=(n-1)2.(2)由于an+1an=2n,故a2a1=21,a3a2=22,…,anan-1=2n-1,将这n-1个等式叠乘,得ana1=21+2+…+(n-1)=2n(n-1)2,故an=2n(n-1)2,所以数列的通项公式为an=2n(n-1)2.(3)因为an+1=3an+2,所以an+1+1=3(an+1),所以an+1+1an+1=3,所以数列{an+1}为等比数列,公比q=3,又a1+1=2,所以an+1=2·3n-1,所以该数列的通项公式为an=2·3n-1-1.由递推关系求数列的通项公式的常用方法71.在数列{an}中,若a1=2,an+1=an+2n-1,则an=.解析:a1=2,an+1=an+2n-1⇒an+1-an=2n-1⇒an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1,则an=2n-2+2n-3+…+2+1+a1=1-2n-11-2+2=2n-1+1.答案:2n-1+12.若a1=1,nan-1=(n+1)an(n≥2),则数列{an}的通项公式an=.解析:由nan-1=(n+1)an(n≥2),得anan-1=nn+1(n≥2).所以an=anan-1·an-1an-2·an-2an-3·…·a3a2·a2a1·a1=nn+1·n-1n·n-2n-1·…·34×23×1=2n+1,(*)又a1也满足(*)式,所以an=2n+1.答案:2n+1数列的函数特征(多维探究)角度一数列的单调性已知数列{an}的通项公式为an=3n+k2n,若数列{an}为递减数列,则实数k的取值范围为()A.(3,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)【解析】因为an+1-an=3n+3+k2n+1-3n+k2n=3-3n-k2n+1,由数列{an}为递减数列知,对任意n∈N*,an+1-an=3-3n-k2n+1<0,所以k>3-3n对任意n∈N*恒成立,所以k∈(0,+∞).故选D.【答案】D(1)解决数列单调性问题的三种方法①用作差比较法,根据an+1-an的符号判断数列{an}是递增数列、递减数列还是常数列;②用作商比较法,根据an+1an(an0或an0)与1的大小关系进行判断;8③结合相应函数的图象直观判断.(2)求数列最大项或最小项的方法①可以利用不等式组an-1≤an,an≥an+1(n≥2)找到数列的最大项;②利用不等式组an-1≥an,an≤an+1(n≥2)找到数列的最小项.角度二数列的周期性等差数列{an}的公差d<0,且a21=a211,则数列{an}的前n项和Sn取得最大值时的项数n的值为()A.5B.6C.5或6D.6或7【解析】由a21=a211,可得(a1+a11)(a1-a11)=0,因为d<0,所以a1-a11≠0,所以a1+a11=0,又2a6=a1+a11,所以a6=0.因为d<0,所以{an}是递减数列,所以a1>a2>…>a5>a6=0>a7>a8>…,显然前5项和或前6项和最大,故选C.【答案】C解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.已知数列{an}满足an=(n-λ)2n(n∈N*),若{an}是递增数列,则实数λ的取值范围是.解析:因为数列{an}是递增数列,所以an+1>an,所以(n+1-λ)2n+1>(n-λ)2n,化为λ<n+2,对∀n∈N*都成立.所以λ<3.答案:(-∞,3)核心素养系列13逻辑推理——数列的通项公式逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程.主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比推理;一类是从一般到特9殊的推理,推理形式主要有演绎推理.已知数列{an}的前n项和Sn=n2an(n≥2),且a1=1,通过计算a2,a3,猜想an等于()A.2(n+1)2B.2n(n+1)C.12n-1D.12n-1【解析】法一(归纳推理):因为Sn=n2an,所以an+1=Sn+1-Sn=(n+1)2an+1-n2an,故an+1=nn+2an,当n=2时,a1+a2
本文标题:2021版高考数学一轮复习 第六章 数列 第1讲 数列的概念及简单表示法教案 文 新人教A版
链接地址:https://www.777doc.com/doc-8482412 .html