您好,欢迎访问三七文档
目前,一般DNA合成都采用固相亚磷酰胺三酯法合成DNA片段,此方法具有高效、快速偶联等优点,已在DNA化学合成中广泛使用。DNA化学合成不同于酶促的DNA合成过程从5'→3'方向延伸,而是由3'端开始。具体的反应步骤如下:一、脱保护基(Deblocking)用三氯乙酸(TrichloroaceticAcid,TCA)脱去连结在CPG(ControlledPoreGlass)上的核苷酸的保护基团DMT(二甲氧基三苯甲基),获得游离的5'-羟基端,以供下一步缩合反应。二、活化(Activation)将亚磷酰胺保护的核苷酸单体与四氮唑活化剂混合并进入合成柱,形成亚磷酰胺四唑活性中间体(其3'-端已被活化,但5'-端仍受DMT保护),此中间体将与GPG上的已脱保护基的核苷酸发生缩合反应。三、连接(Coupling)亚磷酰胺四唑活性中间体遇到CPG上已脱保护基的核苷酸时,将与其5'-羟基发生亲合反应,缩合并脱去四唑,此时合成的寡核苷酸链向前延长一个碱基。四、封闭(Capping)缩合反应后为了防止连在CPG上的未参与反应的5'-羟基在随后的循环反应中被延伸,常通过乙酰化来封闭此端羟基,一般乙酰化试剂是用乙酸酐和N-甲基咪唑等混合形成的。五、氧化(Oxidation)缩合反应时核苷酸单体是通过亚磷酯键与连在CPG上的寡核苷酸连接,而亚磷酯键不稳定,易被酸、碱水解,此时常用碘的四氢呋喃溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。经过以上五个步骤后,一个脱氧核苷酸就被连到CPG的核苷酸上,同样再用三氯乙酸脱去新连上的脱氧核苷酸5'-羟基上的保护基团DMT后,重复以上的活化、连接、封闭、氧化过程即可得到一DNA片段粗品。最后对其进行切割、脱保护基(一般对A、C碱基采用苯甲酰基保护;G碱基用异丁酰基保护;T碱基不必保护;亚磷酸用腈乙基保护)、纯化(常用的有HAP,PAGE,HPLC,C18,OPC等方法)、定量等合成后处理即可得到符合实验要求的寡核苷酸片段。固相合成Oligo是在DNA合成仪上进行的,上述方法合成的Oligo在脱去保护基后,目的Oligo纯度是极低的,含有大量的杂质,主要杂质有所脱下的保护基与氨形成的苯甲酸氨和异丁酸氨,腈磷基上脱下的腈乙基以及合成时产生的短链等,以至于粗产品中Oligo含量仅为15%左右。尽管合成时每一步的效率都在97%~98%,但累积的效率并不高。以链长20mer和50mer为例,(97.5%)20≈60%、(97.5%)50≈28%,可见在粗产品中目的Oligo含量很低,甚至10%都不到。这些杂质,尤其是存在于粗产品中的大量盐和短链,不但造成定量不准,影响下一步的反应,因此必须对Oligo进行纯化。建议采用聚丙烯酰胺凝胶电泳(PAGE)纯化,该方法纯化的产品纯度高,可用于绝大部份的分子生物学实验,可避免许多意想不到的麻烦。若考虑节约经费,对于要求较低的实验,如简单的PCR反应,则采用脱盐纯化即可。OligoDNA是以OD260值来计量的。在1ml的1cm光程标准石英比色皿中,260nm波长下吸光度为1的Oligo溶液定义为1OD260。虽然对于每种特定的寡核苷酸来说,其碱基的组成不尽相同,但1260ODOligoDNA的重量约为33mg,每个碱基的平均分子量约为330Da。DNA化学合成原理我们采用固相亚磷酰胺三酯法合成DNA片段,它具有高效、快速的偶联以及起始反应物稳定的特点。亚磷酰胺三酯法是将DNA固定在固相载体上完成DNA链的合成的,DNA化学合成不同于酶促的DNA合成过程从5'→3'方向延伸,合成的方向是由待合成引物的3'端向5'端合成的,相邻的核苷酸通过3'→5'磷酸二酯键连接,具体反应步骤如下:第一步:将预先连接在固相载体CPG上的活性基团被保护的核苷酸与三氯乙酸反应,脱去其5'-羟基的保护基团DMT,获得游离的5'-羟基。第二步:亚磷酰胺保护的核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3'端被活化,与CPG载体上连接碱基的5'-羟基发生缩合反应。第三步:带帽(capping)反应,缩合反应中会有少量5'-羟基没有参加反应,用乙酸酐和1-甲基咪唑封闭5'-羟基,使其不能再继续发生反应,这种短片段在纯化时可以分离去除。第四步:在氧化剂碘的作用下,亚磷酰形式转变为更稳定的磷酸三酯。经过以上四个步骤,一个脱氧核苷酸被连接到固相载体的核苷酸上。再以三氯乙酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。合成反应原理图示如下:
本文标题:DNA-化学合成
链接地址:https://www.777doc.com/doc-8545708 .html