您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 人教版九年级数学下册课件28.2.2利用仰俯角解直角三角形
导入新课讲授新课当堂练习课堂小结九年级数学下(RJ)教学课件28.1锐角三角函数第二十八章锐角三角函数第2课时利用仰俯角解直角三角形学习目标1.巩固解直角三角形有关知识;(重点)2.能运用解直角三角形知识解决仰角和俯角的问题.(难点)导入新课情境引入某探险者某天到达如图所示的点A处时,他准备估算出离他的目的地——海拔为3500m的山峰顶点B处的水平距离.他能想出一个可行的办法吗?通过这节课的学习,相信你也行...AB..利用解直角三角形解决实际问题的一般过程:1.将实际问题抽象为数学问题;2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;画出平面图形,转化为解直角三角形的问题3.得到数学问题的答案;4.得到实际问题的答案.解直角三角形的应用问题的思路是怎样的?复习引入讲授新课解与仰俯角有关的问题一如图,在进行测量时,从下向上看,视线与水平线上方的夹角叫做仰角;从上往下看,视线与水平线下方的夹角叫做俯角.例1热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m).ABCDαβ仰角水平线俯角典例精析分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30°,β=60°.Rt△ABD中,a=30°,AD=120,所以利用解直角三角形的知识求出BD的长度;类似地可以求出CD的长度,进而求出BC的长度,即求出这栋楼的高度.ABCDαβ仰角水平线俯角解:如图,a=30°,β=60°,AD=120.tan,tan.BDCDaADAD3120403(m).312031203(m).答:这栋楼高约为277.1m.ABCDαβtan120tan30BDADatan120tan60CDAD4031203BCBDCD1603277.1(m).例2建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角为54°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m).ABCD40m54°45°ABCD40m54°45°解:在等腰三角形BCD中∠ACD=90°BC=DC=40m在Rt△ACD中tanACADCDCtanACADCDC∴tan54401.384055.2∴AB=AC-BC=55.2-40=15.2答:旗杆的高度为15.2m.例3如图,小明想测量塔AB的高度.他在D处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至C处.测得仰角为60°,小明的身高1.5m.那么该塔有多高?(结果精确到1m),你能帮小明算出该塔有多高吗?D′AB′BDC′C解:如图,由题意可知,∠AD′B′=30°,∠AC′B′=60°,D′C′=50m.∴∠D′AB′=60°,∠C′AB′=30°,D′C′=50m,设AB′=xm.5025343.3(m),tan60tan30x43.31.544.845(m)ABD′AB′BDC′C''''tan'',tan'',DBCBDABCABxxDBtan60,CBtan30,xxtan60tan3050,xx如图所示,在离上海东方明珠塔1000m的A处,用仪器测得塔顶的仰角∠BAC为25°(在视线与水平线所成的角中,视线在水平线上方的叫作仰角,在水平线下方的叫作俯角),仪器距地面高为1.7m.求上海东方明珠塔的高BD.(结果精确到1m.)练一练如图,在Rt△ABC中,∠BAC=25°,AC=1000m,因此答:上海东方明珠塔的高度BD为468m.从而BC=1000×tan25°≈466.3(m)因此,上海东方明珠塔的高度BD=466.3+1.7=468(m)tan251000BCBCAC当堂练习1.如图1,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=_________米.2.如图2,两建筑物AB和CD的水平距离为30米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为_____米.100203图1图2BCBC3.如图,从地面上的C,D两点测得树顶A仰角分别是45°和30°,已知CD=200米,点C在BD上,则树高AB等于(根号保留).10013米解:依题意可知,在Rt∆ADC中所以树高为19.2+1.72≈20.9(米)4.为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.1米).ADBECtantan5215128015192ADACDCD..米2.目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.(tan39°≈0.81)(1)求大楼与电视塔之间的距离AC;(2)求大楼的高度CD(精确到1米)解:(1)由题意,AC=AB=610(米);(2)DE=AC=610(米),在Rt△BDE中,tan∠BDE=故BE=DEtan39°.因为CD=AE,所以CD=AB-DE·tan39°=610-610×tan39°≈116(米).3.为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,≈1.73,精确到个位).3解:过点C作CD⊥AB于D,∵BC=200m,∠CBA=30°,∴在Rt△BCD中,CD=BC=100m,BD=BC•cos30°≈173(m),在Rt△ACD中,AD≈72(m),∴AB=AD+BD=173+72=245(m).答:隧道AB的长为245m.12课堂小结利用仰俯角解直角三角形仰角、俯角的概念运用解直角三角形解决仰角、俯角问题见《》本课时练习课后作业
本文标题:人教版九年级数学下册课件28.2.2利用仰俯角解直角三角形
链接地址:https://www.777doc.com/doc-8546255 .html