您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 大学课件 > 212空间中直线与直线之间的位置关系
ABCD复习与准备:平面内两条直线的位置关系相交直线平行直线相交直线(有一个公共点)平行直线(无公共点)两路相交立交桥立交桥中,两条路线AB,CDaboab既不平行,又不相交两直线异面的判别二:两条直线不同在任何一个平面内.1.异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线。两直线异面的判别一:两条直线既不相交、又不平行.注1a与b是相交直线a与b是平行直线a与b是异面直线abM答:不一定:它们可能异面,可能相交,也可能平行。分别在两个平面内的两条直线是否一定异面?abab合作探究一练习1:在教室里找出几对异面直线的例子。按平面基本性质分同在一个平面内相交直线平行直线不同在任何一个平面内:异面直线有一个公共点:按公共点个数分相交直线无公共点平行直线异面直线2.1.2空间中直线与直线之间的位置关系2.异面直线的画法说明:画异面直线时,为了体现它们不共面的特点。常借助一个或两个平面来衬托.如图:aabaAbb(1)(3)(2)合作探究二如图是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对?FHCBEDGA答:共有三对AB(F)C(G)DEH(4)等角定理abced㈠:我们知道,在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行.在空间这一规律是否还成立呢?观察:将一张纸如图进行折叠,则各折痕及边a,b,c,d,e,…之间有何关系?a∥b∥c∥d∥e∥…公理4:在空间平行于同一条直线的两条直线互相平行.———平行的传递性推广:在空间平行于一条已知直线的所有直线都互相平行.例2如图空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。求证:EFGH是平行四边形。ABCDEFGH㈡:在平面内,我们可以证明“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补”.空间中这一结论是否仍然成立呢?定理(等角定理):空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.观察:如图所示,长方体ABCD-A1B1C1D1中,∠ADC与∠A1D1C1,∠ADC与∠A1B1C1两边分别对应平行,这两组角的大小关系如何?答:从图中可看出,∠ADC=∠A1D1C1,∠ADC+∠A1B1C1=180OD1C1B1A1CABD3.异面直线所成的角在平面内,两条直线相交成四个角,其中不大于90度的角称为它们的夹角,用以刻画两直线的错开程度,如图.在空间,如图所示,正方体ABCD-EFGH中,异面直线AB与HF的错开程度可以怎样来刻画呢?ABGFHEDCO(2)问题提出(1)复习回顾(3)解决问题异面直线所成角的定义:如图,已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b则把a′与b′所成的锐角(或直角)叫做异面直线所成的角(或夹角).abb′aO思想方法:平移转化成相交直线所成的角,即化空间图形问题为平面图形问题思考:这个角的大小与O点的位置有关吗?即O点位置不同时,这一角的大小是否改变?异面直线所成的角的范围(0,90]oo如果两条异面直线a,b所成的角为直角,我们就称这两条直线互相垂直,记为a⊥ba′在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等)ABDC例2如图,正方体ABCD-中,求:(1)哪些棱所在直线与直线是异面直线?(2)哪些棱所在的直线与直线垂直?(3)直线和的夹角是多少?直线与的夹角是多少?DABCDCBAABABCCAABADA求异面直线所成的角的步骤是:一作(找):作(或找)平行线二证:证明所作的角为所求的异面直线所成的角。三求:在一恰当的三角形中求出角如图,已知长方体ABCD-EFGH中,AB=,AD=,AE=2(1)求BC和EG所成的角是多少度?(2)求AE和BG所成的角是多少度?3232解答:(1)∵GF∥BC∴∠EGF(或其补角)为所求.Rt△EFG中,求得∠EGF=45o(2)∵BF∥AE∴∠FBG(或其补角)为所求,Rt△BFG中,求得∠FBG=60o5.课堂练习ABGFHEDC32322不同在任何一个平面内的两条直线叫做异面直线。异面直线的定义:相交直线平行直线异面直线空间两直线的位置关系6.课堂小结公理4:在空间平行于同一条直线的两条直线互相平行.异面直线的求法:一作(找)二证三求空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.等角定理:异面直线的画法用平面来衬托异面直线所成的角平移,转化为相交直线所成的角作业:P
本文标题:212空间中直线与直线之间的位置关系
链接地址:https://www.777doc.com/doc-8684932 .html