您好,欢迎访问三七文档
§2.6未定式的极限七种未定式:00,,?0,-,00,?1,0。若当xx(或x)时,函数)(xf和)(xg都趋于零,或都趋于无穷大,则把比值)()(xgxf的极限称为00型或型的未定式。例如:xxxsinlim0是未定式型00,xxxlnlim是未定式型。2.6.100型未定式定理1(洛必达法则Ⅰ)已知函数)(xf和)(xg(1)在),(xN内可导,且0)(xg,(2))(limxfxx=0,)(limxgxx=0;(3))()()(lim或Axgxfxx,则)()(limxgxfxx=)()()(lim或Axgxfxx。分析:证明洛必达法则要找到两个函数之比与这两个函数的导数之比之间的联系,而柯西定理正是实现这种联系的纽带。为了使函数)(xf和)(xg在x点满足柯西定理的条件,将函数)(xf和)(xg在x点作连续开拓。这不影响定理的证明,因为函数)()(xgxf在x点的极限与函数)(xf和)(xg在x点的函数值无关。证明:令0)(xf,0)(xg,∵0)()(limxfxfxx,0)()(limxgxgxx,∴)(xf和)(xg在x点连续。),(xNx,则和)(xf)(xg在],[xx或],[xx上满足柯西定理的条件。∴)()()()()()()()(--gfxgxgxfxfxgxf(介于xx与之间)∵当xx时,x,∴)()()(lim)()(lim)()(lim或Axgxfgfxgxfxxxxx。例1.求下列极限:.lnlnln1lnlnlim0bababbaaxxx--当极限过程为xx,-xx,x,x,-x时,只要满足与定理1中相仿的条件,也有类似的结论。(1)).0,0(lim0-baxbaxxx解:xbaxxx-0lim00=)()(lim0-xbaxxx解:xxx1sin)arctan2(lim-00=.11cos11lim22xxxxxxxx1cos111lim22--(2).1sin)arctan2(limxxx-.)()(2)()(lim)(20xxfxxfxxfxfx--(3)设函数)(xf二阶可导,证明:证明:)(2)1)(()(lim000xxxfxxfx--右端问:第二步中)(2)1)(()(lim0xxxfxxfx--仍为00型的未定式,能否用洛必达法则?答:不能!因为条件中只给出)(xf存在,并不知道)(xf是否连续,若用洛必达法则,就会出现)(xxf与)(xxf-的极限,无法处理。])()()()([lim210xxfxxfxxfxxfx----).()]()([21xfxfxf.)()(lim)()(lim)()(limxgxfxgxfxgxfxxxxxx若极限)()(limxgxfxx仍为00型,而极限)()(limxgxfxx存在,则在运用洛必达法则求极限的过程中,可结合代数运算、等价无穷小替换、提取极限不为零的因子等方法将运算简化。.812sinlim412coslim412002------xxxxxxxxxx2coslimsin1lim4122--例2.求.)2()ln(sinlim22xxx-解:)2()2(2sincoslim200--xxxx原式解:xexxx-10)1(limxeexxx-)1ln(10lim2)1ln(0)1ln(1limxxxxexxx-)1()1ln()1()1(lim210xxxxxxxx-20010)1ln()1(lim11lim)1(limxxxxxxxxxx-例3.求.)1(lim10xexxx-][lim)1ln(000xxxe将具有非零极限的因子及时分离出来!20)1ln()1(limxxxxex-xxex21)1ln(1lim000--.2)1ln(lim20exxex--.2)1(lim10exexxx--定理2(洛必达法则Ⅱ)2.6.2?型未定式已知函数)(xf和)(xg(1)在),(xN内可导,且0)(xg,(3))()()(lim或Axgxfxx,则)()(limxgxfxx=)()()(lim或Axgxfxx。(2))(limxfxx,)(limxgxx;解:0xlimxxlncotlnxxxx1)csc(tanlim20-.1limsintanlim22020---xxxxxxx例4.求下列极限当极限过程为xx,-xx,x,x,-x时,只要满足与定理2中相仿的条件,也有类似的结论。(1)0xlimxxlncotlnxxxxxxxx2sin6sinlim)sin(cos233)3sin(3cos2lim2200--.3262cos26cos6lim200--xxx(2)xxx3tantanlim2解:xxxxxxxxx2222222cos33coslim3sec3seclim3tantanlim另解:xxxxxxxxx2220022csc3csc3limcot3cotlim3tantanlim--33sinsinlim3222xxx。例5.求下列极限(1)xxxlnlim(0)解:xxxlnlim=01lim1lim1-xxxxx。(2))0,1(limaaxxx解:①当10时,0lnlimlim1-aaxaxxxxx,②当1时,Nn,使)0(1--nnn,逐次应用洛必达法则,直到第次n,有-aaxaxxxxxlnlimlim10)(ln)1()1(lim---nxnxaaxn该例说明对任意,1,0a当x时,对数函数xln,幂函数x,指数函数xa都是正无穷大。比较这三个函数,xa增长最快,x次之,xln最慢。2.6.3其它类型未定式-1000000gffggf--111fggeflnfggf1倒数关系例6.求下列极限(1)2tan)1(lim1xxx-(0型)解:2tan)1(lim1xxx-2cot)1(lim10xxx-=.222csc1lim2100--xx.2lim12limxxxxexe(2))1(lim-xexexxx(-型)解:)1(lim)1(lim--xxexexexxxxx(3)xxxsin0)(tanlim(0型)解:原式xxxetanlnsin00lim=,tanlnsinlim0xxxe∵xxxtanlnsinlim00=xxxcsctanlnlim0=xxxxxcotcscsectan1lim20-.0cossinlim20-xxx∴.1)(tanlim0sin0exxx,)ln(1lim210naaaxxnxxxe(4)xxnxxxnaaa1210)(lim).,,2,1,0(niai(1型)解:)21ln(101limnxnaxaxaxxe原式xnaaaxnxxxln)ln(lim2100-xnxxnxnxxxaaaaaaaaa212211000lnlnlnlimnaaanlnlnln21.ln)ln(12121nnnaaaaaan∴.)(lim21ln121021nnaaaxxnxxxaaaenaaann∵)ln(1lim210naaaxxnxxx(5)xxxln10)(cotlim(0型)解:)ln(cotln10limln1)ln(cot0ln10lim)(cotlimxxxxxxxxeex∵xxxxxxxxxx1)csc(cot1limln)ln(cotlim)ln(cotlim200ln10-,1limsintanlim2020---xxxxxxxx∴1ln10)(cotlim-exxx。右端极限不存在且不是,∴不能用洛必达法则求极限,另找方法如下:.001)1sintan(limtan1sinlim020xxxxxxxxx例7.求下列极限(1))00(tan1sinlim20型xxxx解:∵)1sin(2xx=xxx1cos1sin2-,两次利用洛必达法则后,又还原为原问题,法则失效。另找方法:(2)xlim)(型---xxxxeeee解:xlimxxxxeeee---xxxxxeeee---lim,limxxxxxeeee---xxxxxeeee---lim.111lim22---xxxee例8.已知0)3sin(lim230bxaxxx,求常数ba,的值。解:3302303sinlim)3sin(limxbxaxxbxaxxxx22000333cos3limxbxaxx①xbxxx663sin9lim000-0663cos27lim000-bxx②由①得303)33cos3(lim20-aabxaxx;由②得290627)63cos27(lim0--bbbxx.2)1tan()(nnnnf设,因是n离散变量,)(nf无导数,故不能直接使用洛必达法则求极限。但若能用洛必达法则求出连续变量的函数x2)1tan()(xxxxf,),0(x的极限Axfx)(lim,则根据数列极限与函数极限的关系,便有Anfn)(lim。注意9.求2)1tan(limnnnn(Nn)。∵21012)tan(lim)1tan(lim)(limttxtxxxttxxxf令3tantan0])tan1[(limtttttttttt---而313tanlim31seclimtanlim22022030--tttttttttt,故312)1tan(limennnn。解:设),0()(,)1tan()(2Cxfxxxfx则,∴31)(limexfx,注意:当)(limxfx不存在时,不能断定Anfn)(lim不存在,这时应使用其他方法求极限。
本文标题:26未定式的极限
链接地址:https://www.777doc.com/doc-8684950 .html