您好,欢迎访问三七文档
当前位置:首页 > 学术论文 > 经济论文 > 中央电大第一季度经济数学基础答案
1经济数学基础形成性考核册及参考答案作业(一)(一)填空题1.___________________sinlim0xxxx.答案:02.设0,0,1)(2xkxxxf,在0x处连续,则________k.答案:13.曲线xy在)1,1(的切线方程是.答案:2121xy4.设函数52)1(2xxxf,则____________)(xf.答案:x25.设xxxfsin)(,则__________)2π(f.答案:2π(二)单项选择题1.函数212xxxy的连续区间是()答案:DA.),1()1,(B.),2()2,(C.),1()1,2()2,(D.),2()2,(或),1()1,(2.下列极限计算正确的是()答案:BA.1lim0xxxB.1lim0xxxC.11sinlim0xxxD.1sinlimxxx3.设yxlg2,则dy().答案:BA.12dxxB.1dxxln10C.ln10xxdD.1dxx4.若函数f(x)在点x0处可导,则()是错误的.答案:BA.函数f(x)在点x0处有定义B.Axfxx)(lim0,但)(0xfAC.函数f(x)在点x0处连续D.函数f(x)在点x0处可微5.当0x时,下列变量是无穷小量的是().答案:CA.x2B.xxsinC.)1ln(xD.xcos(三)解答题1.计算极限(1)123lim221xxxx)1)(1()1)(2(lim1xxxxx=)1(2lim1xxx=212(2)8665lim222xxxxx=)4)(2()3)(2(lim2xxxxx=)4(3lim2xxx=21(3)xxx11lim0=)11()11)(11(lim0xxxxx=)11(lim0xxxx=21)11(1lim0xx(4)42353lim22xxxxx31423531lim22xxxxx(5)xxx5sin3sinlim0535sin33sin5lim0xxxxx=53(6))2sin(4lim22xxx4)2sin()2)(2(lim2xxxx2.设函数0sin0,0,1sin)(xxxxaxbxxxf,问:(1)当ba,为何值时,)(xf在0x处有极限存在?(2)当ba,为何值时,)(xf在0x处连续.答案:(1)当1b,a任意时,)(xf在0x处有极限存在;(2)当1ba时,)(xf在0x处连续。3.计算下列函数的导数或微分:(1)2222log2xxyx,求y答案:2ln12ln22xxyx(2)dcxbaxy,求y答案:y=2)()()(dcxbaxcdcxa2)(dcxcbad3(3)531xy,求y答案:531xy=21)53(x3)53(23xy(4)xxxye,求y答案:xxxye)1(21(5)bxyaxsine,求yd答案:)(sinesin)e(bxbxyaxaxbbxbxaaxaxcosesine)cossin(ebxbbxaaxdxbxbbxadyax)cossin(e(6)xxyx1e,求yd答案:ydxxxxde)123(12(7)2ecosxxy,求yd答案:ydxxxxxd)2sine2(2(8)nxxynsinsin,求y答案:y=xxnncossin1+nxncos=)coscos(sin1nxxxnn(9))1ln(2xxy,求y答案:y)1(1122xxxx)2)1(211(112122xxxx)11(1122xxxx211x(10)xxxyx212321cot,求y4答案:652321cot61211sin2ln2xxxxyx4.下列各方程中y是x的隐函数,试求y或yd(1)1322xxyyx,求yd答案:解:方程两边关于X求导:0322yxyyyx32)2(xyyxy,xxyxyyd223d(2)xeyxxy4)sin(,求y答案:解:方程两边关于X求导4)()1)(cos(yxyeyyxxy)cos(4))(cos(yxyeyxeyxxyxy)cos(e)cos(e4yxxyxyyxyxy5.求下列函数的二阶导数:(1))1ln(2xy,求y答案:222)1(22xxy(2)xxy1,求y及)1(y答案:23254143xxy,1)1(y作业(二)(一)填空题1.若cxxxfx22d)(,则___________________)(xf.答案:22ln2x2.xxd)sin(________.答案:cxsin3.若cxFxxf)(d)(,则xxxfd)1(2.答案:cxF)1(2124.设函数___________d)1ln(dde12xxx.答案:055.若ttxPxd11)(02,则__________)(xP.答案:211x(二)单项选择题1.下列函数中,()是xsinx2的原函数.A.21cosx2B.2cosx2C.-2cosx2D.-21cosx2答案:D2.下列等式成立的是().A.)d(cosdsinxxxB.)1d(dlnxxxC.)d(22ln1d2xxxD.xxxdd1答案:C3.下列不定积分中,常用分部积分法计算的是().A.xxc1)dos(2,B.xxxd12C.xxxd2sinD.xxxd12答案:C4.下列定积分计算正确的是().A.2d211xxB.15d161xC.0)d(32xxxD.0dsinxx答案:D5.下列无穷积分中收敛的是().A.1d1xxB.12d1xxC.0dexxD.1dsinxx答案:B(三)解答题1.计算下列不定积分(1)xxxde3答案:xxxde3=xd)e3x(=cxxe3lne3(2)xxxd)1(2答案:xxxd2)1(=xxxxd)21(2=x)dx2x(x2321216=cxxx252352342(3)xxxd242答案:xxxd242=x2)d-(x=cxx2212(4)xxd211答案:xxd211=)21121xx2-d(1=cx21ln21(5)xxxd22答案:xxxd22=)212xxd(222=cx232)2(31(6)xxxdsin答案:xxxdsin=xdxsin2=cxcos2(7)xxxd2sin答案:xxxd2sin=xxxdcod2s2=2cos2xxxxcod2s2=cxxx2sin42cos2(8)xx1)dln(答案:xx1)dln(=)1xx1)d(ln(=)1ln()1(xx1)1)dln((xx=cxxx)1ln()1(2.计算下列定积分(1)xxd121答案:xxd121=xxd11)1(+xxd21)1(=212112)21()21(xxxx=257(2)xxxde2121答案:xxxde2121=xex1211d=211xe=ee(3)xxxdln113e1答案:xxxdln113e1=)ln1131xxlnd(1e=2(3121)ln1ex=2(4)xxxd2cos20答案:xxxd2cos20=202sin21xxd=20202sin212sin21xdxxx=21(5)xxxdlne1答案:xxxdlne1=21ln21xxde=e1212lnln21xdxxxe=)1e(412(6)xxxd)e1(40答案:xxxd)e1(40=4e041xxdx=3xxexxde4040=4e55作业三(一)填空题1.设矩阵161223235401A,则A的元素__________________23a.答案:32.设BA,均为3阶矩阵,且3BA,则TAB2=________.答案:723.设BA,均为n阶矩阵,则等式2222)(BABABA成立的充分必要条件是.答案:BAAB4.设BA,均为n阶矩阵,)(BI可逆,则矩阵XBXA的解______________X.答案:ABI1)(85.设矩阵300020001A,则__________1A.答案:31000210001A(二)单项选择题1.以下结论或等式正确的是().A.若BA,均为零矩阵,则有BAB.若ACAB,且OA,则CBC.对角矩阵是对称矩阵D.若OBOA,,则OAB答案C2.设A为43矩阵,B为25矩阵,且乘积矩阵TACB有意义,则TC为()矩阵.A.42B.24C.53D.35答案A3.设BA,均为n阶可逆矩阵,则下列等式成立的是().`A.111)(BABA,B.111)(BABAC.BAABD.BAAB答案C4.下列矩阵可逆的是().A.300320321B.321101101C.0011D.2211答案A5.矩阵444333222A的秩是().A.0B.1C.2D.3答案B三、解答题1.计算(1)01103512=53219(2)001130200000(3)21034521=02.计算723016542132341421231221321解72301654274001277197723016542132341421231221321=1423011121553.设矩阵110211321B110111132,A,求AB。解因为BAAB22122)1()1(01021123211011113232A01101-1-0321110211321B所以002BAAB4.设矩阵01112421A,确定的值,使)(Ar最小。答案:1001112421A410740421)1()1()3()2()1()2(740410421)3()2(0490410421)47()2()3(当49时,2)(Ar达到最小值。5.求矩阵32114024713458512352A的秩。答案:32114024713458512352A)3)(1(32114123
本文标题:中央电大第一季度经济数学基础答案
链接地址:https://www.777doc.com/doc-8688852 .html