您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 超级资源(30套)2018年全国各地高考数学 模拟试题附答案 汇总
(30套)2018年全国各地高考数学模拟试题附答案汇总(761页)2018年安徽省淮北市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分1.(5分)设复数Z满足(1+i)Z=i,则|Z|=()A.B.C.D.2【解答】解:由(1+i)Z=i,得Z=,∴|Z|=.故选:A.2.(5分)已知A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则A∩B=(A.[﹣1,3]B.[﹣3,2]C.[2,3]D.[1,3]【解答】解:A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={y|y=x2+1}={y|y≥1},则A∩B={x|1≤x≤3}=[1,3],故选:D3.(5分)函数f(x)=+ln|x|的图象大致为()A.B.C.D.)【解答】解:当x<0时,函数f(x)=(x)=递减,排除CD;,由函数y=、y=ln(﹣x)递减知函数f当x>0时,函数f(x)=可排除A,只有B正确,故选:B.,此时,f(1)==1,而选项A的最小值为2,故4.(5分)《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框图,若输入的a、b分别为96、42,则输出的i为()A.4B.5C.6D.7【解答】解:由程序框图可知:当a=96,b=42时,满足a>b,则a=96﹣42=54,i=1由a>b,则a=54﹣42=12,i=2由a<b,则b=42﹣12=30,i=3由a<b,则b=30﹣12=18,i=4由a<b,则b=18﹣12=6,i=5由a>b,则a=12﹣6=6,i=6由a=b=6,输出i=6.故选:C.5.(5分)如果实数x,y满足关系()A.(﹣∞,],又≥λ恒成立,则λ的取值范围为B.(﹣∞,3]C.[,+∞)D.(3,+∞)【解答】解:设z==2+,z的几何意义是区域内的点到D(3,1)的斜率加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为∴z的最小值为,∴λ的取值范围是(﹣∞,].故选:A.=,6.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图得该几何体是从四棱锥P﹣ABCD中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,∴所求的体积V=故选:B.=,7.(5分)已知等比数列{an}中,a5=3,a4a7=45,则A.3B.5C.9D.25【解答】解:根据题意,等比数列{an}中,a5=3,a4a7=45,的值为()则有a6==15,则q==5,则==q2=25;故选:D.8.(5分)已知F是双曲线﹣=1(a>0,b>0)的右焦点,若点F关于双曲线的一条渐近线对称的点恰好落在双曲线的左支上,则双曲线的离心率为()A.B.C.D.【解答】解:设F(c,0),渐近线方程为y=x,对称点为F'(m,n),即有=﹣,,且n=解得m=,n=﹣,将F'(,﹣),即(,﹣),代入双曲线的方程可得﹣=1,化简可得解得e=﹣4=1,即有e2=5,.故选:C.9.(5分)函数f(x)在定义域R内可导,若f(1+x)=f(3﹣x),且当x∈(﹣∞,2)时,(x﹣2)f(x)<0,设a=f(0),b=f(),c=f(3),则a,b,c的大小关系是()A.a>b>cB.c>a>bC.c>b>aD.b>c>a【解答】解:∵f(1+x)=f(3﹣x),∴函数f(x)的图象关于直线x=2对称,∴f(3)=f(1).当x∈(﹣∞,2)时,(x﹣2)f′(x)<0,∴f′(x)>0,即f(x)单调递增,∵0<<1,∴f(0)<f()<f(2),即a<b<c,故选:D.10.(5分)已知函数f(x)=asinx﹣2cosx的一条对称轴为x=﹣=﹣16,则|x1+x2|的最小值为()A.B.C.D.cosx,且f(x1)f(x2)【解答】解:f(x)=asinx﹣2=sin(x+θ),由于函数f(x)的对称轴为:x=﹣所以f(﹣)=﹣a﹣3,,,则|﹣a﹣3|=解得:a=2;所以:f(x)=4sin(x﹣),由于:f(x1)f(x2)=﹣16,所以函数f(x)必须取得最大值和最小值,所以:x1=2kπ+或x2=2kπ﹣.,k∈Z;所以:|x1+x2|的最小值为故选:C.11.(5分)对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a×b的方向与向量a,b的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD﹣EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=()A.4B.8C.D.垂直平面ABCD,且方向向上,设与【解答】解:据向量积定义知,向量所成角为θ.∵∠EAB=∠EAD=∠BAD=60°,∴点E在底面ABCD上的射影在直线AC上.作EI⊥AC于I,则EI⊥面ABCD,∴θ+∠EAI=.过I作IJ⊥AD于J,连EJ,由三垂线逆定理可得EJ⊥AD.∵AE=2,∠EAD=60°,∴AJ=1,EJ=.又∵∠CAD=30°,IJ⊥AD,∴AI=∵AE=2,EI⊥AC,∴cos∠EAI=∴sinθ=故故选D.=|=..,cosθ=.×=,=cos∠EAI=|||sin∠BAD||cosθ=8×12.(5分)若存在实数x使得关于x的不等式(ex﹣a)2+x2﹣2ax+a2≤成立,则实数a的取值范围是()A.{}B.{}C.[,+∞)D.[,+∞)【解答】解:不等式(ex﹣a)2+x2﹣2ax+a2≤成立,即为(ex﹣a)2+(x﹣a)2≤,表示点(x,ex)与(a,a)的距离的平方不超过,即最大值为.由(a,a)在直线l:y=x上,设与直线l平行且与y=ex相切的直线的切点为(m,n),可得切线的斜率为em=1,解得m=0,n=1,切点为(0,1),由切点到直线l的距离为直线l上的点与曲线y=ex的距离的最小值,可得(0﹣a)2+(1+a)2=,解得a=,则a的取值集合为{}.故选:A.二、填空题:本大题共4小题,每小题5分13.(5分)已知等差数列{an}前15项的和S15=30,则a2+a9+a13=6.【解答】解:∵设等差数列的等差为d,{an}前15项的和S15=30,∴=30,即a1+7d=2,则a2+a9+a13=(a1+d)+(a1+8d)+(a1+12d)=3(a1+7d)=6.故答案为:6.14.(5分)若的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为1120.【解答】解:由题意可知,2n=256,解得n=8.∴==令8﹣2r=0,得r=4.∴该展开式中常数项的值为故答案为:1120.15.(5分)已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的序号是②⑤①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;.,其,展开式的通项④f()>f()⑤f()<f()【解答】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示:f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故答案为:②⑤.16.(5分)在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则+2的最小值为2.【解答】解:∵D、E是AB、AC的中点,∴M到BC的距离等于点A到BC的距离的一半,∴S△ABC=2S△MBC,而△ABC的面积2,则△MBC的面积S△MBC=1,S△MBC=丨MB丨丨MC丨sin∠BMC=1,∴丨MB丨丨MC丨=.∴=丨MB丨丨MC丨cos∠BMC=.由余弦定理,丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨丨CM丨cos∠BMC,显然,BM、CM都是正数,∴丨BM丨2+丨CM丨2≥2丨BM丨丨CM丨,∴丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨×丨CM丨cos∠BMC=2×∴=2+﹣2×2≥,+2×.﹣2×方法一:令y=,则y′=,令y′=0,则cos∠BMC=,此时函数在(0,)上单调减,在(,1)上单调增,∴cos∠BMC=时,+2的最小值为2;,sin(∠BMC+α)=2,取得最小值为,方法二:令y=则ysin∠BMC+cos∠BMC=2,则tanα=,则sin(∠BMC+α)=解得:y≥则+,2的最小值为2.≤1,;故答案为:2三、解答题17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c﹣b)cosA.(1)求cosA的值;(2)若b=3,点M在线段BC上,【解答】(本题满分为12分)=2,||=3,求△ABC的面积.解:(1)因为acosB=(3c﹣b)cosA,由正弦定理得:sinAcosB=(3sinC﹣sinB)cosA,即sinAcosB+sinBcosA=3sinCcosA,可得:sinC=3sinCcosA,在△ABC中,sinC≠0,所以(2)∵.…(5分)=2,两边平方得:,可得:=4,,由b=3,||=3,解得:c=7或c=﹣9(舍),所以△ABC的面积.…(12分)18.(12分)在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.【解答】(Ⅰ)证明:如图,在圆台OO′中,∵CD圆O′,∴CD∥平面ABE,∵面BCD∩面ABE=l,∴l∥CD,∵CD平面CDE,l平面CDE,∴l∥面CDE;(Ⅱ)解:连接OO′、BO′、OE,则CD∥OE,由AB⊥CD,得AB⊥OE,又O′B在底面的射影为OB,由三垂线定理知:O′B⊥OE,∴O′B⊥CD,∴∠O′BO就是求面BCD与底面ABE所成二面角的平面角.设AB=4,由母线与底面成角,,可得OE=2O′D=2,DE=2,OB=2,OO′=∴cos∠O′BO=.19.(12分)如图为2017届淮北师范大学数学与应用数学专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生随机的分配往A、B、C三所学校,若每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?(Ⅲ)若90~95分数段内的这n名毕业生中恰有两女生,设随机变量ξ表示n名毕业生中分配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.【解答】解:(Ⅰ)80~90分数段的毕业生的频率为:p1=(0.04+0.03)×5=0.35,此分数段的学员总数为21人,∴毕业生的总人数N为N==60,90~95分数段内的人数频率为:p2=1﹣(0.01+0.04+0.05+0.04+0.03+0.01)×5=0.1,∴90~95分数段内的人数n=60×0.1=6.(Ⅱ)将90~95分数段内的6名毕业生随机的分配往A、B、C三所学校,每所学校至少分配两名毕业生,且甲乙两人必须进同一所学
本文标题:超级资源(30套)2018年全国各地高考数学 模拟试题附答案 汇总
链接地址:https://www.777doc.com/doc-8739565 .html