您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 人教版小学数学教案优秀范例
人教版小学数学教案优秀范例掌握整数和小数初等算术的运算顺序,使用括号,能够熟练计算整数和小数初等算术问题。通过总结整数和小数初等算术的运算顺序,提高学生的抽象概括能力。培养学生良好的学习习惯,提高计算能力。来看看人教版小学数学教案优秀范文吧!欢迎咨询!人教版小学数学教案优秀范文1教学目标:1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题3.培养学生利用恰当的方法解决实际问题的能力。教学重点:通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系.教学难点:通过复习,使学生能够准确的找出题目中的等量关系.教学过程:一、复习准备.(P107)1.找出下列应用题的等量关系.①男生人数是女生人数的2倍.②梨树比苹果树的3倍少15棵.③做8件大人衣服和10件儿童衣服共用布31.2米.④把两根同样的铁丝分别围成长方形和正方形.(学生回答后教师点评小结)我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)二、新授内容1、教学例3、(1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?①.读题,学生试做.②.学生汇报(可能情况)(90+75)×4提问:90+75求得是什么问题?再乘4求的是什么?90×4+75×4提问:90×4与75×4分别表示的是什么问题?(由学生计算出甲乙两站的铁路长多少千米。)(2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?(先用算术方法解,再用方程解)①、660÷(90+75)=?②方程解:设经过x小时相遇,(90+75)×x=660或者,90×x+75×x=660让学生说出等量关系和解题的思路教师小结(略)(3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?(先用算术方法解,再用方程解)①、(660—90×4)÷4=?②、方程解:设货车每小时行x千米90×4+4x=660或者(90+x)×4=660让学生说出等量关系和解题的思路教师小结(略)让学生比较上面三道应用题,它们有什么联系和区别?比较用方程解和用算术方法解,有什么不同?教师提问:这两道题有什么联系?有什么区别?三、巩固反馈.(P109---1题)1.根据题意把方程补充完整.(1)张华借来一本116页的科幻小说,他每天看x页,看了7天后,还剩53页没有看._____________=53_____________=116(2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元.一共用去139.5元._____________=139.5_____________=9.6×3(3)电工班架设一条全长x米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米._____________=280×32.(P110----4题)解应用题.东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.3.思考题.甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?四、课堂总结.通过今天的复习,你有什么收获?五、课后作业.(P110---5题)不抄题,只写题号。板书设计:列方程解应用题等量关系具体问题具体分析例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千人教版小学数学教案优秀范文相关文章:★★★★★★★★★★人教版小学数学教案优秀范文2教学目标:1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。教学重点:除数是整数,商是小数的小数除法的计算方法。教学难点:除得的结果有余数,补“0”继续除。教学过程:一、复习导入课件出示情境主题图开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?引导学生列出算式并独立计算:18.6÷624÷4计算后说一说整数除法与小数除法的异同。二、对比中探索,交流中生成师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?教师把情境题中的18.6改成18.9,把24改成26.1、初步尝试,发现问题。请你尝试计算这两题,你发现了什么?2、独立思考,尝试解决。师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷63、讨论交流,异中求同。(1)在小组内汇报自己的计算方法。(2)展示汇报。(可能出现第4页中几种不同的方法)(3)对比这几种方法:有什么相同的地方?引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3.15元。4、应用方法,归纳总结。竖式计算26÷4(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。(2)尝试总结除数是整数的小数除法的计算方法。三、巩固练习。1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?2、错题诊所。209÷5=41810÷25=41.26÷18=0.73、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。32÷812÷252.45÷34、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?四、课堂总结本节课你有哪些收获?人教版小学数学教案优秀范文3教学目标:(一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。(二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。(三)培养学生养成良好的学习习惯,提高学生的计算能力。教学重点:掌握整数、小数四则混合运算的运算顺序。教学难点:提高学生计算正确率以及约等号的正确使用。教学过程:一、复习准备1.口算12+0.12=7.2-0.2=3.5÷0.35=2.95+0.05=5-0.6=2.8÷0.14=8÷12.5=1.2+2.8-3.99=4×1.72=3.74+6.26=4.5×6=0.25×4÷0.2=2÷4=20×0.2=20.75-9.5=3.5×8×0.125=2.提问(1)我们学过哪几种运算?(2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)(3)整数四则混合运算的顺序是什么?二、学习新课1.学习例1:3.7-2.5+4.6=3.6×6÷0.9=(1)思考:以上两题中分别含有什么运算?运算顺序怎样?(2)学生试算后订正。3.7-2.5+4.6=1.2+4.6=5.83.6×6+0.9=21.6÷0.9=24(3)小结运算顺序①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)2.学习例2:35.6-5×1.73=6.75+2.52÷1.2=(1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?(2)学生计算后订正。(3)小结。以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。(4)练习:先说出运算顺序,再算出得数。①P37“做一做”;②3.6÷1.2+0.5×5。思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)教师介绍:小括号“()”是公元17世纪由荷兰人吉拉特首先使用。中括号“[]”是公元17世纪首次出现在英国的互里士的著作中。小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)3.试做例3:3.6÷(1.2+0.5)×5=3.69÷[(1.2+0.5)×5]=(1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)(2)学生试做3.6÷(1.2+0.5)×5=3.6÷1.7×53.6÷[(1.2+0.5)×5]=3.6÷[1.7×5]=3.6÷8.5计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)学生继续计算后,订正3.6÷(1.2+0.5)×5=3.6÷1.7×5≈2.12×5=10.63.6÷[(1.2+0.5)×5]=3.6÷[1.7×5]=3.6÷8.5≈0.42提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)4.小结(1)什么情况用等于号?什么时候用约等于号?(当除不尽或者商的小数位数较多时,用“四舍五入法”保留两位小数,在保留两位小数取近似值的这一步,要写约等于号;当取准确值时,用等号。)(2)要改变算式的运算顺序,可以怎么办?(可以使用小括号、中括号。)(3)有括号的算式,运算顺序怎样?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)三、巩固反馈1.P38:做一做。2.P40:1①②,2①②。(1)说出运算顺序;(2)计算并且验算;(3)订正并小结验算方法。验算方法:①原式验算;②互逆验算;③交换验算。3.判断下面各题,哪些是对的,哪些是错的,并说明原因。(1)0.8-0.8×0.7=0();(2)1.6+1.4×2=6();(3)50-3.9+6.1=40();(4)20÷2.5×4=32();(5)9.6+0.4-9.6+0.4=0();(6)4.8×2÷4.8×2=1()。4.P40:4。先计算填空,再列出综合算式。5.课后作业:P40:1③④,2③④,3。
本文标题:人教版小学数学教案优秀范例
链接地址:https://www.777doc.com/doc-9221556 .html