您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 国内外标准规范 > 牛顿法潮流计算的高效综合稀疏技术
:7111211.4000302.400010:。、。,,,。,,。,,。IEEE5727465:,。:;;;;;:TM744:A:1004-9649(2010)07-0019-05:2009-10-11;:2010-05-04:(1968—),,,,,。E-mail:cquyanwei@21cn.com0[1-2],[3-10]。:[3]、[4]、[5];[7-9]、[8]、[1];LU[10],3。,、、[7-9]3。2×2HijNijJijLij!、HijNijRijSij!(),。,2,2。,,2,,,。,。,,,;。。1。,[10],(n-m)(n-m),,。,。1.1N,2×2HijNijJijLij!,HijNijRijSij!(Hij,Nij、JijLij):ELECTRICPOWER43720107Vol.43,No.7Jul.20101943i≠j:Hij=-Bijei+GijfiRij=0Sij=≠≠≠≠≠≠≠≠≠0i=j:Hij=-Biiei+2Giifi+Biiei+j=nj=1,j≠iΣ(Gijfj+Bijej)Rij=2fiSii=2ei≠≠≠≠≠≠Σ≠≠≠≠≠≠。,,i≠j,2×2(i,j)。i=j,2×2i,。:,2×2,。,,,2。,,,,2。1.2:n,(m-1)PQ;(n-m)PV;1;,k()。1.2.1。,,,。,,,,2×2,,。,2×2,(n-1);,2(n-1)。,(n-1);2(n-1),,。1.2.2、。,、,。,,、,。,、()。,PQ,m≈n,,m=n,PV,。,2×2,。:=(n-1)2;2×2=(n-1)+2k;=[(n-1)+2k]/(n-1)2。:=[2(n-1)]2=4(n-1)2;=4[(n-1)+2k];=[(n-1)+2k]/(n-1)2。,,,,。2,,,,、。2.12:、()。,,。,,。14。1:(1),,,。(2),,,,。(3)()(),()。(4)20:72383IEEE300IEEE118IEEE570.257350.013280.004060.001880.815780.064630.014220.007660.315470.205480.285510.2454327460.350000.926600.37773/s1Fig.1Structureofthetwo-layerlinkedlisttableAij=HijNijJijLij!HijNijRijSij!,Yij=[GijBij],,YijAij。2.2,,2×2,。,:()。,,,。2。:,,?,,,,,。,,,。2.3,,,。,,,。,。、,。,、。,,、,。“,”,,。,,,。3:Pentium(R)4CPU2.26GHz,512MB,WindowsXP,VC6.0。2746、2383IEEE300、118、57。、,。3.11。:。3.2,,。2“”,。:1Tab.1Comparisonofthecalculationtime2143。3.32:,。3“”,。:2,,。3.4、;,,。2:,;3(、),。4:,1∶4,。4:、。,。,。:,、。,,、。,,30%,,。:[1],,.[M].:,2004.WUJian-ping,WANGZheng-hua,LIXiao-mei.Efficientsolutionsandparallelcomputingofsparselinearequations[M].Changsha:HunanScience&TechnologyPress,2004.[2]BENZIM.Preconditioningtechniquesforlargelinearsystems:Asurvey[J].JournalofComputationalPhysics,2002,18(2):418-477.[3]TINNEYW,WALKERJ.Directsolutionsofsparsenetworkequationsbyoptionallyorderedtriangularfactorization[J].ProceedingsoftheIEEE,1967,55(11):1801-1809.[4]DAIVSTA,GLLBERTJR,LARIMORESI.Acolumnapproximateminimumdegreeorderingalgorithm[J].ACMTransactionsonMathematicalSoftware,2004,30(3):353-376.[5]KRISHNAM,SAMBARAPUS,HALPINM.Sparsematrixtechniques3Tab.3Comparisonofthelinerequationssolvingtimeandquantityofinputelements4Tab.4Comparisonofthequantityofstoringelementsandmemoryoperationtime2Tab.2ComparisonoftheJacobianmatrixformation&modificationtime2383IEEE300IEEE118IEEE5766550.035470.001330.000590.00014274650.037500.142660.248630.008860.1501120.002920.202060.001090.128440.149850.25025/s2383IEEE300IEEE118IEEE576655274650.188700.523400.006570.030620.001440.004540.000720.002780.253100.607806600171440.360530.3849751017560.214570.290431582620.317180.603051163580.258990.3240210478209000.416420.50134//s2383IEEE300IEEE118IEEE570.040600.003750.001330.0005827460.051600.1765081550.0193711180.006884760.003562130.198509756306780.230020.2658342020.193600.2660615380.193310.309497690.162920.27698352060.259950.27711/s/22:7IntegratedsparsetechniqueofNewtonpowerflowcalculationYANWei1,HUANGZheng-bo1,YUJuan1,ZHANGHai-bing2,XiangBo11.StateKeyLaboratoryofPowerTransmissionEquipment&SystemSecurityandNewTechnology,ChongqingUniversity,Chongqing400030,China;2.ElectricPowerMaintenanceandInstallationInstituteofChongqingElectriePowerCompany,Chongqing400010,ChinaAbstract:AnintegratedsparsetechniqueofNewtonpowerflowcalculationwasproposedtoenhancetheefficiencyofthecalculation.Aboveall,throughthesystemsanalysis,itisadvancedthatthestructureoftheblockconformationoftheJacobianmatrixundertherealbusinnetworksisabletoenhancetheefficienciesofthesetwoparts,whicharetheformation&modificationofJacobianmatricesandthedecomposition&solvingoflinearequations.Andakindoftwo-layerlinkedlisttablewasconstructedfurther.Thetwo-layerlinkedlistiscomposedofcrosslinkedlistandbinarylinkedlist,suchthatthecrosslinkedliststorestheblockJacobianmatrixandthebinarylinkedliststoresbusadmittancematrix,andthecorrespondingcellsbetweenthetwolayersarelinkedviathepointer.First,whenformattingandmodifyingtheJacobianmatrix,thevalueofadmittanceisobtainedthroughthelinkingbetweenthetwokindsoflinkedlists,whichavoidingtheeffectofthechangingoftheoriginalJacobiansturctureafterGaussdecomposition,andspeedinguptheefficiency.Second,thelayerofthecrosslinkedlistthatispreservedduringtheiterationisusedtosolvelinearequationsdirectly,whichspeedinguptheefficiency.Theresultoffivenetworksfrom57to2746busesaregiven:comparedwiththetraditionaltechniques,theintegratedsparsetechniqueofNewtonpowerflowdescribedinthisthesisismorecapableofimprovingtheefficiency.Keywords:Newtonpowerflowcalculation;sparsetechnique;Jacobianmatrixmodification;blockmatrix;linearequations;dynamiclinkedlistinpowersystems[C]//39thSoutheasternSymposiumonSystemTheory,2007.[6],.[J].,2003,27(8):54-58.WANAShou-xiang,WANACheng-shan.Comparativestudyofoptimalnodeindexingschemesfordistributionsystems[J].AutomationofElectricPowerSystems,2003,27(8):54-58.[7],,.[J].,1999,19(6):31-33.YOUZhong-xiao,JINYong,LIShu-mao.Theapplicationoforthogonallinkedlistinpowerflowcalculation[J].ElectricPowerAutomationEquipment,1999,19(6):31-33.[8],.[J].,2005,10(8):28-31.YEJian-hua,LINJi-keng.StudyontheefficiencyoftwosparsestoragemodesforNewtonpowerflowcalculation[J].TheWaterConservancyandElectricityi
本文标题:牛顿法潮流计算的高效综合稀疏技术
链接地址:https://www.777doc.com/doc-9295134 .html