您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教a版2019数学选择性必修第三册75正态分布2021年最热同步卷
第1页(共21页)人教A版(2019)选择性必修第三册《7.5正态分布》2021年最热同步卷一.选择题(共15小题)1.某电子厂生产的电子管的使用寿命X(单位:天)服从正态分布(1000N,250),则电子管寿命位于区间(950,1100)内的概率是()附:随机变量X服从正态分布2(,)N,则()0.6826PX,(22)0.9544PX,(33)0.9974PX.A.0.4772B.0.84C.0.9759D.0.81852.设随机变量~(1,1)XN,其正态分布密度曲线如图所示,那么向正方形ABCD中随机投掷10000个点,则落入阴影部分的点的个数的估计值是()(注:若2~(,)XN,则()0.6826PX,(22)0.9544)PXA.7539B.7028C.6587D.60383.已知随机变量2~(,)XN,且(22)0.9545PX,()0.6827PX,若10,2,则(1214)(PX)A.0.1358B.0.1359C.0.2716D.0.27184.已知某市一次高二测试数学成绩2~(90,)XN,且(70110)0.8PX,则从该市任取3名高三学生,恰有1名学生成绩不低于110分的概率是()A.0.2B.0.1C.0.243D.0.0275.设1~(XN,21),2~(YN,22),这两个正态分布密度曲线如图所示,下列结论中正确的是()3V第2页(共21页)A.12,12B.12,12C.12,12D.12,126.某校在一次月考中共有800人参加考试,其数学考试成绩X近似服从正态分布2(105,)N,试卷满分150分.现已知同学甲的数学成绩为90分,学校排名为720,同学乙的数学成绩为120分,那么他的学校排名约为()A.60B.70C.80D.907.已知随机变量X服从正态分布(5,1)N,若(46)0.6826PX,则(6)(PX )A.0.3413B.0.3174C.0.1587D.0.15868.已知随机变量x服从正态分布2(3,)N,且(4)0.84Px,则(24)(Px)A.0.84B.0.68C.0.32D.0.169.已知随机变量2~(0,)N,且(1)0.3P ,则(10)(P)A.0.2B.0.3C.0.4D.0.510.已知随机变量服从正态分布2(1,)N,若(4)0.9P,则(24)(P)A.0.2B.0.4C.0.6D.0.811.已知随机变量2~(2,)XN,(4)0.84PX,则(02)(PX)A.0.16B.0.32C.0.34D.0.6812.在某区2020年5月份的高二期中质量检测中,学生的数学成绩服从正态分布~(98,100)XN.且(88108)0.683Px,(78118)0.954Px,已知参加本次考试的学生有9460人,王小雅同学在这次考试中数学成绩为108分,则她的数学成绩在该区的排名大约是()A.2800B.2180C.1500D.623013.设随机变量X服从正态分布(1N,2)(0),若(0)0.15PX,则(02)(PX)A.0.35B.0.6C.0.7D.0.8514.已知随机变量(2,1)XN∽,其正态分布密度曲线如图所示.若在边长为1的正方形OABC内随机取一点,则该点恰好取自黑色区域的概率为()附:若随机变量2~(,)N,则()0.6826P,(22)0.9544P.A.0.1359B.0.6587C.0.7282D.0.8641第3页(共21页)15.已知随机变量服从正态分布2(1,)N,若(4)0.9P,则(21)(P)A.0.2B.0.3C.0.4D.0.6二.填空题(共10小题)16.某种产品的质量指标值Z服从正态分布2(,)N,且(33)0.9974PZ.某用户购买了10000件这种产品,则这10000件产品中质量指标值位于区间(3,3)之外的产品件数为.17.设随机变量服从标准正态分布(0,1)N,在某项测量中,已知(||1.96)0.950P,则在(1.96,)内取值的概率为.18.某市高二20000名学生参加市体能测试,成绩采用百分制,平均分为80,标准差为5,成绩服从正态分布,则成绩在(65,95]的人数为.参考数据:()0.6826PX,(22)0.9544PX,(33)0.9974PX.19.若随机变量2~(,)XN,(4)(2)0.1PXPX,则(14)PX.20.随机变量2~(,)XN,22()21()2xfxe满足:(1)xR,()()fxfx;(2)1()2fe,则(12)PX.附:()0.6827PX;(22)0.9545PX;(33)0.9973PX.21.根据公共卫生传染病分析中心的研究,传染病爆发疫情期间,如果不采取任何措施,则会出现感染者基数猛增,重症挤兑,医疗资源负荷不堪承受的后果.如果采取公共卫生强制措施,则会导致峰值下降,峰期后移.如图,设不采取措施、采取措施情况下分别服从正态分布(35,2)N,(70,8)N,则峰期后移了天,峰值下降了%(注:正态分布的峰值计算公式为1)222.已知随机变量2~(1,)XN,若(2)0.2PX,则(0)PX.23.一批电池(一节)用于无线麦克风的寿命服从均值为34.3小时,标准差为4.3小时的正态分布,随机从这批电池中任意抽取一节,则这节电池可持续使用不少于30个小时的概率.(参考数据:()0.6826PX,(22)0.9544)PX3V第4页(共21页)24.已知随机变量X满足~(,)XN,且(22)0.9544PXa,若随机变量~(2019,4)XN,则(2023)PX的值大约是.25.某市一次高三年级数学统测,经抽样分析,成绩X近似服从正态分布2(84,)N,且(7884)0.3PX.该市某校有400人参加此次统测,估计该校数学成绩不低于90分的人数为.三.解答题(共5小题)26.随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载用户每日健步的步数.某市大型企业为了了解其员工每日健步走的情况,从正常上班的员工中随机抽取了2000人,统计了他们手机计步软件上同一天健步的步数(单位:千步,假设每天健步的步数均在3千步至21千步之间).将样本数据分成[3,5),[5,7)[7,9),[9,11),[11,13),[13,15),[15,17),[17,19),[19,21]九组,绘制成如图所示的频率分布直方图,并用样本的频率分布估计总体的频率分布.(1)求图中a的值;(2)设该企业正常上班的员工健步步数(单位:千步)近似服从正态分布2(,)N,其中近似为样本的平均数(各区间数据用中点值近似计算),取3.64,若该企业恰有10万人正常上班的员工,试估计这些员工中日健步步数Z位于区间[4.88,15.8]范围内的人数;(3)现从该企业员工中随机抽取20人,其中有k名员工的日健步步数在13千步至15千步内的概率为()PXk,其中0k,1,2,,20,当()PXk最大时,求k的值.参考数据:若随机变量服从正态分布2(,)N,则()0.6827P,(22)0.9545P,(33)0.9973P.27.“全面小康路上一个也不能少”是习近平总书记向全国人民作出的郑重承诺!是对全面建成小康社会的形象表达,其中一个重要指标,就是到2020年我国现行标准下农村贫困人口全面脱贫.目前,全国还有一些贫困县未摘帽,3V第5页(共21页)不少贫困村未出列,建档立卡贫困人口尚未全部脱贫.某市为了制定下一步扶贫战略,统计了全市1000户农村贫困家庭的年纯收入,并绘制了如下频率分布直方图:(1)若这1000户家庭中,家庭年纯收入不低于5(千元)的家庭,且不超过7(千元)的户数为40户,请补全频率分布图,并求出这1000户家庭的年纯收入的平均值X(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为这1000户的家庭年纯收入X服从正态分布2(,)N,其中近似为年纯收入的平均值X,2近似为样本方差,经计算知29.26;设该市的脱贫标准为家庭年纯收入为x千元(即家庭年纯收入大于x千元,则该户家庭实现脱贫,否则未能脱贫),若根据此正态分布估计,这1000户家庭中有841.35户家庭实现脱贫,试求该市的脱贫标准x;(3)若该市为了加大扶贫力度,拟投入一笔资金,帮助未脱贫家庭脱贫,脱贫家庭巩固脱贫成果,真正做到“全面小康路上一个也不能少”,方案如下:对家庭年纯收入不超过5.92千元的家庭每户家庭给予扶持资金15千元,对家庭年纯收入超过5.92千元,但不超过8.96千元的家庭每户家庭给予扶持资金12千元,对家庭年纯收入超过8.96千元,但不超过15.04千元的家庭每户家庭给予扶持资金8千元,对家庭年纯收入超过15.04千元的家庭不予以资金扶持,设Y为每户家庭获得的扶持资金,求()EY(结果精确到0.001).附:若随机变量2~(,)XN,则()0.6827PX,(22)0.9545PX,9.263.04.28.随着5G商用进程的不断加快,手机厂商之间围绕5G用户的争夺越来越激烈,5G手机也频频降低身价飞入寻常百姓家.某科技公司为了给自己新推出的5G手机定价,随机抽取了100人进行调查,对其在下一次更换5G手机时,能接受的价格(单位:元)进行了统计,得到结果如表.已知这100个人能接受的价格都在[1000,3500)之间,并且能接受的价格的平均值为2350元(同一组的数据用该组区间的中点值代替).分组一二三四五手机价格X(元)[1000,1500)[1500,2000)[2000,2500)[2500,3000)[3000,3500)3V第6页(共21页)频数10xy2020(1)现用分层抽样的方法从第一、二、三组中随机抽取6人,将该样本看成一个总体,从中机抽取2人,求其中恰有1人能接受的价格不低于2000元的概率;(2)若人们对5G手机能接受的价格X近似服从正态分布2(,)N,其中为样本平均数x,2为样本方差2s,求(23502974)PX.附:396.24,若2~(,)XN,则(,)0.6826P,(2,2)0.9544P.29.上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布(120N,25),现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组[85,95),第二组[95,105),,第六组[135,145],得到如图所示的频率分布直方图:(1)试由样本频率分布直方图估计该校数学成绩的平均分数;(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X,求2X 的概率.附:若2~(,)XN,则()0.6826PX,(22)0.9544PX,(33)0.9974PX.30.振华大型电子厂为了解每位工人每天制造某种电子产品的件数,记录了某天所有工人每人的制造件数,并对其进行了
本文标题:人教a版2019数学选择性必修第三册75正态分布2021年最热同步卷
链接地址:https://www.777doc.com/doc-9718171 .html