您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 《三角形内角和》数学教案(精选4篇)
参考资料,少熬夜!《三角形内角和》数学教案(精选4篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“《三角形内角和》数学教案(精选4篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!《三角形内角和》数学教案【第一篇】学习目标:(1)知识与技能:掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。(2)过程与方法:通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。(3)情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。一、自主预习二、回顾课本1、三角形的内角和是多少度?你是怎样知道的?2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。3、回忆证明一个命题的步骤①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。③分析、探究证明方法。4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?①如图1,延长BC得到一平角BCD,然后以CA参考资料,少熬夜!为一边,在△ABC的外部画A。②如图1,延长BC,过C作CE∥AB③如图2,过A作DE∥AB④如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。三、巩固练习四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)五、达标检测:略六、布置作业《三角形内角和》数学教案【第二篇】尊敬的各位评委老师:大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。教学难点:采用多种途径验证三角形的内角和是180°。四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。六、课前准备参考资料,少熬夜!1、教师准备:多媒体课件、三角形教具。2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。(二)、自主探究、合作交流1、探索特殊三角形内角和拿出自己的一副三角板,同桌之间互相说一说各个角的度数。三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°90°+45°+45°=180°从刚才两个三角形内角和的计算中,你发现了什么?2、探索一般三角形的内角和一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。3、汇报交流请小组代表汇报方法。1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)没有统一的结果,有没有其他方法?2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)4)教师课件验证结果。请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?学生回答后教师板书:三角形的内角和是180°为什么有的小组用测量的方法不能得到180°?(误差)4、验证深化质疑:大小不同的三角形,它们的内角和会是一样参考资料,少熬夜!吗?(一样)谁能说一说不能画出有两个直角的三角形的原因?(三)、应用规律,解决问题:揭示规律后,学生要掌握知识,就要通过解答实际问题。1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)第二关,提高练习,①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。让学生灵活应用隐含条件来解决问题,进一步提高能力。2、小组合作练习,完成相应做一做。(四)、课堂总结,效果检测。一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。(五)作业课下继续探究三角形,看你有什么新发现。八、板书设计通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!《三角形内角和》数学教案【第三篇】教学内容:人教版义务教育课程标准试验教科书数学四年级下册第67页。设计理念:遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。教材分析:参考资料,少熬夜!三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。学情分析:学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。教学目标:1.使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。2.使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。3.使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识《三角形内角和》数学教案【第四篇】教学目标⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。教学重点:检验三角形的内角和是180°。教学难点:引导学生通过实验探究得出三角形的内参考资料,少熬夜!角和是180度。教学环节:问题情境与教师活动:学生活动媒体应用设计意图目标达成导入新课一、复习旧知,导入新课。1、复习三角形分类的知识。师出示三角形,生快速说出它的名称。2、什么是三角形的内角?我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、巩固知识。一个三角形中能不能有两个直角?能不能有2个钝角?环节三、应用所学,解决问题。1、基础练习(课本第68页做一做)在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。2、判断题参考资料,少熬夜!(1)大三角形的内角和大于180度。()(2)三角形的内角和可能是180度。()(3)一个三角形中最多只能有一个直角。()(4)三角形的三个内角分别可能是30度,60度,70度。()3、求出下面三角形各角的度数。(1)我三边相等。(2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。四、总结:这节课你有什么收获?
本文标题:《三角形内角和》数学教案(精选4篇)
链接地址:https://www.777doc.com/doc-9789827 .html