您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 关于高一数学必修一教案【汇编5篇】
好文供参考!1/15关于高一数学必修一教案【汇编5篇】【引读】这篇优秀的文档“关于高一数学必修一教案【汇编5篇】”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!高一数学集合教案【第一篇】教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;知识点1、并集一般地,由所有属于集合A或属于集合B的元素所好文供参考!2/15组成的集合,称为集合A与B的并集(Union)记作:A∪B读作:“A并B”即:A∪B={x|x∈A,或x∈B}Venn图表示:第4/7页A与B的所有元素来表示。A与B的交集。2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。记作:A∩B读作:“A交B”即:A∩B={x|∈A,且x∈B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。拓展:求下列各图中集合A与B的并集与交集A说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集3、补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。好文供参考!3/15补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,记作:CUA即:CUA={x|x∈U且x∈A}第5/7页补集的Venn图表示说明:补集的概念必须要有全集的限制4、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。5、集合基本运算的一些结论:A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩AA?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A(CUA)∪A=U,(CUA)∩A=?若A∩B=A,则A?B,反之也成立若A∪B=B,则A?B,反之也成立若x∈(A∩B),则x∈A且x∈B好文供参考!4/15若x∈(A∪B),则x∈A,或x∈B¤例题精讲:例1设集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在数轴上表示出集合A、B。例2设A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:(1)A?(B?C);(2)A??A(B?C)。例3已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求实数m的取值范围。XX且x?N}例4已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系。高一数学教案【第二篇】教学目标:①掌握对数函数的性质。②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。③注重函数思想、等价转化、分类讨论等思想的渗透,提高好文供参考!5/15解题能力。教学重点与难点:对数函数的性质的应用。教学过程设计:⒈复习提问:对数函数的概念及性质。⒉开始正课1比较数的大小例1比较下列各组数的大小。⑴,(a0,a≠1)⑵,logЛ,lnЛ师:请同学们观察一下⑴中这两个对数有何特征?生:这两个对数底相等。师:那么对于两个底相等的对数如何比大小?生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。师:对,请叙述一下这道题的解题过程。生:对数函数的单调性取决于底的大小:当0调递减,所以;当a1时,函数y=logax单调递增,所以板书:解:Ⅰ)当0∵Ⅱ)当a1时,函数y=logax在(0,+∞)上是增好文供参考!6/15函数,∵师:请同学们观察一下⑵中这三个对数有何特征?生:这三个对数底、真数都不相等。师:那么对于这三个对数如何比大小?生:找“中间量”,0,lnЛ0,logЛ,板书:略。师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。2函数的定义域,值域及单调性。高一数学集合教案【第三篇】[三维目标]一、知识与技能:1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想3、了解集合元素个数问题的讨论说明好文供参考!7/15二、过程与方法通过提问汇总练习提炼的形式来发掘学生学习方法三、情感态度与价值观培养学生系统化及创造性的思维[教学重点、难点]:会正确应用其概念和性质做题[教具]:多媒体、实物投影仪[教学方法]:讲练结合法[授课类型]:复习课[课时安排]:1课时[教学过程]:集合部分汇总本单元主要介绍了以下三个问题:1,集合的含义与特征2,集合的表示与转化3,集合的基本运算一,集合的含义与表示(含分类)1,具有共同特征的对象的全体,称一个集合2,集合按元素的个数分为:有限集和无穷集两类高一数学教案全集5【第四篇】数学教案-圆锥的体积教学目标好文供参考!8/151、使学生理解求圆锥体积的计算公式。2、会运用公式计算圆锥的体积。教学重点圆锥体体积计算公式的推导过程。教学难点正确理解圆锥体积计算公式。教学步骤一、铺垫孕伏1、提问:(1)圆柱的体积公式是什么?(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)二、探究新知(一)指导探究圆锥体积的计算公式。1、教师谈话:下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒好文供参考!9/15人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?2、学生分组实验3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)下载1下载2下载3下载4下载5①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。……4、引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。板书:5、推导圆锥的体积公式:用字母表示圆锥的体积公式。板书:6、思考:要求圆锥的体积,必须知道哪两个条件?好文供参考!10/157、反馈练习圆锥的底面积是5,高是3,体积是()圆锥的底面积是10,高是9,体积是()(二)教学例11、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?学生独立计算,集体订正。板书:答:这个零件的体积是76立方厘米。2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)(1)已知圆锥的底面半径和高,求体积。(2)已知圆锥的底面直径和高,求体积。(3)已知圆锥的底面周长和高,求体积。4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?(三)教学例21、例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)好文供参考!11/15思考:这道题已知什么?求什么?要求小麦的重量,必须先求什么?要求小麦的体积应怎么办?这道题应先求什么?再求什么?最后求什么?2、学生独立解答,集体订正。板书:(1)麦堆底面积:=×4=(平方米)(2)麦堆的体积:×=(立方米)(3)小麦的重量:735×=≈11078(千克)答:这堆小麦大约重11078千克。3、教学如何测量麦堆的底面直径和高。(1)启发学生根据自己的生活经验来讨论、谈想法。(2)教师补充介绍。a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径。也可用两根好文供参考!12/15竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的'直径。b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得。三、全课小结通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)高一数学教案全集5【第五篇】圆周长、弧长(二)教学目标:1、应用圆周长、弧长公式综合圆的有关知识解答问题;2、培养学生综合运用知识的能力和数学模型的能力;3、通过应用题的教学,向学生渗透理论联系实际的观点。教学重点:灵活运用弧长公式解有关的应用题。教学难点:建立数学模型。教学活动设计:(一)灵活运用弧长公式例1、填空:好文供参考!13/15(1)半径为3cm,120°的圆心角所对的弧长是_______cm;(2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;(3)已知半径为3,则弧长为π的弧所对的圆心角为_______.(学生独立完成,在弧长公式中l、n、R知二求一。)答案:(1)2π;(2)24;(3)60°。说明:使学生灵活运用公式,为综合题目作准备。练习:P196练习第1题(二)综合应用题例2、如图,两个皮带轮的中心的距离为,直径分别为和(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转。教师引导学生建立数学模型:分析:(1)皮带长包括哪几部分(+DC++AB);(2)“两个皮带轮的中心的距离为”,给我们解决此题提供了什么数学信息?(3)AB、CD与⊙O1、⊙O2具有什么位置关系?AB与CD具有什么数量关系?根据是什么?(AB与CD是⊙O1与⊙O2的公切线,AB=CD,根据的是两圆外公切线长相等。)好文供参考!14/15(4)如何求每一部分的长?这里给学生考虑的时间和空间,充分发挥学生的主体作用。解:(1)作过切点的半径O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足为E.∵O1O2=,,,∴,∴(m)∵,∴,∴的长l1(m)。∵,∴的长(m)。∴皮带长l=l1+l2+2AB=(m)。(2)设大轮每分钟转数为n,则,(转)答:皮带长约,大轮每分钟约转277转。说明:通过本题渗透数学建模思想,弧长公式的应用,求两圆公切线的方法和计算能力。巩固练习:P196练习2、3题。探究活动钢管捆扎问题已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度。好文供参考!15/15请根据下列特殊情况,找出规律,并加以证明。提示:设钢管的根数为n,金属带的长度为Ln如图:当n=2时,L2=(π+2)d.当n=3时,L3=(π+3)d.当n=4时,L4=(π+4)d.当n=5时,L5=(π+5)d.当n=6时,L6=(π+6)d.当n=7时,L7=(π+6)d.当n=8时,L8=(π+7)d.猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为L=(π+n)d.证明略。
本文标题:关于高一数学必修一教案【汇编5篇】
链接地址:https://www.777doc.com/doc-10235934 .html