您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 组织学习教育 > 高中数学德育渗透教案【实用4篇】
高中数学德育渗透教案【实用4篇】【参考指引】此文档资料“高中数学德育渗透教案【实用4篇】”由三一刀客网友为您精编整理,供您阅读参考,希望对您有所帮助,喜欢就分享下载吧!高中数学德育渗透教案【第一篇】《充分条件与必要条件》教学准备教学目标运用充分条件、必要条件和充要条件教学重难点运用充分条件、必要条件和充要条件教学过程一、基础知识(一)充分条件、必要条件和充要条件1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。(二)充要条件的判断1若成立则A是B成立的充分条件,B是A成立的必要条件。2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。3.若成立则A、B互为充要条件。证明A是B的充要条件,分两步:(1)充分性:把A当作已知条件,结合命题的前提条件推出B;(2)必要性:把B当作已知条件,结合命题的前提条件推出A。二、范例选讲例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?(1)在△ABC中,p:ABq:BCAC;(2)对于实数x、y,p:x+y≠8q:x≠2或y≠6;(3)在△ABC中,p:SinASinBq:tanAtanB;(4)已知x、y∈R,p:(x-1)2+(y-2)2=0q:(x-1)(y-2)=0解:(1)p是q的充要条件(2)p是q的充分不必要条件(3)p是q的既不充分又不必要条件(4)p是q的充分不必要条件练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)0的一个必要而不充分条件是(C)A、x1D、│x-2│3例2.填空题(3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A是D的条件.答案:(1)充分条件(2)充要、必要不充分(3)A=BC=D故填充分。练习2(变式2)若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分又不必要条件例4.(证明充要条件)设x、y∈R,求证:|x+y|=|x|+∣y∣成立的充要条件是xy≥0.证明:先证必要性:即|x+y|=|x|+∣y∣成立则xy≥0,由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴xy≥0;再证充分性即:xy≥0则|x+y|=|x|+∣y∣若xy≥0即xy0或xy=0下面分类证明(Ⅰ)若x0,y0则|x+y|=x+y=|x|+∣y∣(Ⅱ)若x(Ⅲ)若xy=0,不妨设x=0则|x+y|=∣y∣=|x|+∣y∣综上所述:|x+y|=|x|+∣y∣∴|x+y|=|x|+∣y∣成立的充要条件是xy≥0.例5.已知抛物线y=-x2+mx-1点A(3,0)B(0,3),求抛物线与线段AB有两个不同交点的充要条件.解:线段AB:y=-x+3(0≤x≤3)-----------(1)抛物线:y=-x2+mx-1---------------(2)(1)代入(2)得:x2-(1+m)x+4=0--------(3)抛物线y=-x2+mx-1与线段AB有两个不同交点,等价于方程(3)在[0,3]上有两个不同的解.高中数学德育渗透教案【第二篇】新课程改革要求我们努力构建以德育为核心,以培养学生的创新精神和实践能力为重点,以学习方式的改变为特征,以应用现代信息技术为标志的课程体系。作为自然基础学科的数学,将打破传统的教学方式,更加注重数学与实际的联系,更加注重数学的趣味性,也更加关注学生在数学学习中所表现出来的情感、态度、价值观。因此,如何在数学教学中找到德育的切入点,进行德育渗透,是我们值得研究和思考的问题,是学校进行道德教育的基本内容。德育渗透“渗”的途径怎样?该运用哪些手段和方法?这里,我结合自己的教学实践谈几点认识,以期抛砖引玉。一、结合教学内容适时进行爱国主义教育。高中数学教材的例题、习题、注释、阅读材料中,有不少进行德育教育有说服力的数学材料。因此我们要将数学教材,作为融知识传授、能力培养和思想品德教育为一体的综合性载体,深入挖掘其中的德育因素,促进对学生的德育教育。根据教材内容适时向学生介绍我国古今数学领域的杰出成就和数学家的事迹,可培养学生的民族自尊心和自豪感,增强热爱社会主义祖国的思想感情。例如:公元五世纪,我国博学多才的数学家祖日恒(祖冲之之子),在实践的基础上总结出著名的体积公理,幂势既同,则积不容异。一千一百多年后的17世纪意大利数学家卡发雷利(1595—1647)在他的名著《连续不可分几何》中才提出这个公理。关于二项式定理,公元1261年,我国数学家杨辉在他著的《详解九章算法》中提出了著名的“杨辉三角形”,比法国数学家帕斯卡(1623—1662)在1653年才开始使用这个“三角形”早四百多年……在芝加哥一家博物馆中,有一张引人注目的名单,名单上开列的都是当今世界著名的数学家,在这当中有一个中国人的名字?——华罗庚,他是自学成才的数学家。苏步青教授是从放牛娃到著名数学家,他在微分几何方面有很高的水平,在国际上有威望,他写的《一般空间微分几何》一书,获得国家科学奖。在数学皇冠上,有一颗耀眼的明珠,那就是著名的“哥德巴赫猜想”。几百年来,在伸向这颗明珠的无数双手中,有一双手距离明珠最近,那就是我国著名数学家陈景润的一双勤奋的手,我们包头市第九中学的数学家陆家羲……;在国际数学奥赛中,我国中学生自从组队参赛以来,都夺得辉煌成就,特别是1997年的38届国际数学奥赛,我国中学生夺得六枚金牌,总分第一,压倒群芳。但是,1998年7月的第39届国际数学奥赛中国大陆却未组队参赛,这是为什么?因为竞赛地点在台北,有台湾的同胞参赛,世界上只有一个中国……,这些素材,我们在课堂教学中适时给学生介绍,都能很好地培养学生的爱国主义思想,树立民族自尊心和自信心,增强学生的主人翁思想和社会责任感,激励他们刻苦学习,敢于争先,为国争光。二、数学是一门知识体系严谨,逻辑性很强的自然科学。在数学教学中,应当重视数学思想方法的教学,这些数学思想在科学思想方面将给人以启迪,可以培养学生的科学态度与科学习惯,使人们目的明确,思维清晰,行为准确,善于实践,勇于创新。无论我们的学生将来从事何种职业,数学思想都将使他们终身受益。比如:数学公理是人们在长期生产实践中总结出的经验。如两点间的连线,线段最短,蚂蚁缘槐走捷径,犬击目标径直奔。真理是客观存在的,公理自在人间,做人要守公德,教学生学知识也要同时教学生学会做人。数学要发展,有些早期的概念要拓广,就需要一些限制、规定,如a≠0时,我们规定a0=1,若无此规定,指数的运算就无法推广;人类要生存发展,也需要一些规定与限制,国有国法,家有家规,中学生就应该遵纪守法,自觉遵守《中学生守则》,遵守学校校规,明礼诚信,信守社会公德,做一个德智体美劳全面发展的好学生。又如:数学美在于他的对称性、和谐性。正四面体的顶点在底面的射影是底面中心,它的任何一个面都是正三角形,正三角形的四心合一(外心、内心、垂心、重心),它的任何一个面都可作为底面,此时它们仍然是一个三棱锥。圆锥曲线的分类以其离心率e的取值为标准,圆的离心率为0,反证法的难点在于无中生有,制造矛盾,否定假设……我们在教学过程中,可以旁敲侧击,教育学生在学校、年级、班级内部,要安定团结,不要制造矛盾,闹分裂,不要扩大离心率,大家要一条心,学习正四面体的随意性与适应性,将来无论党把我们安排在哪里,都是一个堂堂正正的中国人,寓德育于谈笑间。数学的推理是严密的,数的计算是准确的。新学期伊始,大家都想排个好座位,一班60人,同学们无妨计算一下有多少种不同座次排法,60!这是一个天文数字,60!1060,一天排几百次,一辈子也排不清,只能宏观调控,约定几条总的是有利于大家的原则排座次,从而培养学生大局观念,体会到党和政府对国民经济的发展为什么要进行宏观调控。三、精心编拟数学题组,适机进行德育教育。例:(旧版本课本题)设1980年底我国人口以10亿计算①如果我国人口每年比上年平均递增2%,那么2000年底达到多少?②要使2000年底我国人口不超过12亿,那么,每年比上年平均递增率最高是多少?计划生育是我国的基本国策,每一位公民都应当知晓,通过这些信息,可以使学生了解我国人口的基本情况,唤起控制人口的忧患意识。但现阶段又出现了与此相矛盾的新问题:老龄化问题、养老金问题、就业与延迟退休问题等等又如何解决?这些都需要学生了解,使学生有忧患意识,眼光具有前瞻性。数学教学中,更应渗透思想教育及市场经济内容,在遵循教学大纲、教学要求的前提下,适时地将社会变革中敏感的市场经济变化中最显著的内容补充进去,融汇进教学中,诸如增长率、物价、造价、利润、储蓄、规划、生态平衡.德育渗透不只局限在课堂上,还应与实践活动有机结合,我们可以适当开展一些数学活动课和数学主题活动。通过调查、阅读等途径搜集、占有资料,提出问题,分析问题,最终使问题得到解决。不仅智力得到发展,学生还在思维方式,行为规范等方面得到锻炼,受到思想品德教育和美育熏陶。寓教育于学习之中,寓教育于活动之中。例如,在学“统计”这一内容时,开展“热爱环境”的实践活动,让学生统计他们的家里一天要扔多少个塑料袋?一周要扔多少个?一个月要扔多少个?假设以一个家庭每天用5个塑料袋计算,我们全校这么多名学生,一天要扔多少个?一周要扔多少个?一个月要扔多少个?现在的塑料它是一种不易分解的物质,这样,再过几年,想象一下,我们的地球将会是什么样子?这样,学生通过统计、计算,着实地认识到使用塑料袋对环境的危害,他们就会自觉自愿地站在抵抗使用塑料袋的行列里来,减少白色污染。在讲授《椭圆及其标准方程》之前,我们可以先给学生讲述2008年9月25号,我国‘神舟’七号载人飞船在中国酒泉卫星发射中心成功发射升空发射到2012年6月16日的神舟九号载人飞船升空与天宫对接,标志着我国航天科技取得又一次跨越式胜利的伟大创举,再引入所要讲的课题。可以让学生了解我国的科学技术水平在世界上的领先地位,既调动了学生学习数学的积极性,又激年他们立志为献身于祖国的社会主义现代化建设而努力奋斗的民族热情。在教与学中,经常渗透一些新鲜血液,数学教学才会具有生命力,才会使学生潜移默化地受到热爱社会主义制度、热爱社会主义祖国的思想教育,才会促使学生关心社会、了解社会、适应社会,团结友善,勤俭自强,敬业奉献。提高学生解决问题的能力,才会激励他们为祖国建设、祖国的繁荣昌盛贡献青春。梁启超在一九○○年二月十日《少年中国说》中说到:“少年智则国智,少年富则国富,少年强则国强,少年独立则国独立,少年自由则国自由,少年进步则国进步,少年胜于欧洲,则国胜于欧洲,少年雄于地球,则国雄于地球”。告诫学生以史为鉴,奋发图强,为中华之崛起而奋斗。当然,数学教育的德育渗透不仅仅是以上几个方面,它贯穿于整个教育过程中。它与我们的各个教学环节和内容有着千丝万缕的联系。只要我们多做有心人,善于发现与引导,寓德育于数学教学的每个环节之中,就一定能达到“润物细无声”的教育效果,也只有这样我们才能培养出“有道德、有理想、有文化、有纪律”的一代新人,才能站在至高处,总览全局,以不变应万变,才能达到“会当凌绝顶,一览众山小”的境界。高中数学德育渗透教案【第三篇】教学目的:掌握圆的标准方程,并能解决与之有关的问题教学重点:圆的标准方程及有关运用教学难点:标准方程的灵活运用教学过程:一、导入新课,探究标准方程二、掌握知识,巩固练习练习:⒈说出下列圆的方程⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3⒉指出下列圆的圆心和半径⑴(x-2)2+(y+3)2=3⑵x2+y2=2⑶x2+y2-6x+4y+12=0⒊判断3x-4y-10=0和x2+y2=4的位置关系⒋圆心为(1,3),并与3x-4y-7=0相切,求
本文标题:高中数学德育渗透教案【实用4篇】
链接地址:https://www.777doc.com/doc-10981341 .html