您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 专题05一元二次方程(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】
2020年中考数学真题分项汇编(全国通用)专题5一元二次方程(共50道)一.选择题(共24小题)1.(2020•临沂)一元二次方程x2﹣4x﹣8=0的解是()A.x1=﹣2+2√3,x2=﹣2﹣2√3B.x1=2+2√3,x2=2﹣2√3C.x1=2+2√2,x2=2﹣2√2D.x1=2√3,x2=﹣2√3【分析】方程利用配方法求出解即可.【解析】一元二次方程x2﹣4x﹣8=0,移项得:x2﹣4x=8,配方得:x2﹣4x+4=12,即(x﹣2)2=12,开方得:x﹣2=±2√3,解得:x1=2+2√3,x2=2﹣2√3.故选:B.2.(2020•菏泽)等腰三角形的一边长是3,另两边的长是关于x的方程x2﹣4x+k=0的两个根,则k的值为()A.3B.4C.3或4D.7【分析】当3为腰长时,将x=3代入原一元二次方程可求出k的值;当3为底边长时,利用等腰三角形的性质可得出根的判别式△=0,解之可得出k值,利用根与系数的关系可得出两腰之和,将其与3比较后可得知该结论符合题意.【解析】当3为腰长时,将x=3代入x2﹣4x+k=0,得:32﹣4×3+k=0,解得:k=3;当3为底边长时,关于x的方程x2﹣4x+k=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×k=0,解得:k=4,此时两腰之和为4,4>3,符合题意.∴k的值为3或4.故选:C.3.(2020•凉山州)一元二次方程x2=2x的根为()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣2【分析】移项后利用因式分解法求解可得.【解析】∵x2=2x,∴x2﹣2x=0,则x(x﹣2)=0,∴x=0或x﹣2=0,解得x1=0,x2=2,故选:C.4.(2020•泰安)将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21B.﹣4,11C.4,21D.﹣8,69【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【解析】∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.5.(2020•黑龙江)已知2+√3是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是()A.0B.1C.﹣3D.﹣1【分析】把x=2+√3代入方程就得到一个关于m的方程,就可以求出m的值.【解析】根据题意,得(2+√3)2﹣4×(2+√3)+m=0,解得m=1;故选:B.6.(2020•河南)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】根据新定义运算法则以及即可求出答案.【解析】由题意可知:1☆x=x2﹣x﹣1=0,∴△=1﹣4×1×(﹣1)=5>0,故选:A.7.(2020•南京)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【分析】先把方程(x﹣1)(x+2)=p2化为x2+x﹣2﹣p2=0,再根据方程有两个不相等的实数根可得△=1+8+4p2>0,由﹣2﹣p2>0即可得出结论.【解析】∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,∵两个的积为﹣2﹣p2,∴一个正根,一个负根,故选:C.8.(2020•黑龙江)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是()A.k<14B.k≤14C.k>4D.k≤14且k≠0【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【解析】∵关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2,∴△=[﹣(2k+1)]2﹣4×1×(k2+2k)≥0,解得:k≤14.故选:B.9.(2020•鄂州)目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%【分析】设全市5G用户数年平均增长率为x,则2020年底全市5G用户数为2(1+x)万户,2021年底全市5G用户数为2(1+x)2万户,根据到2021年底全市5G用户数累计达到8.72万户,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解析】设全市5G用户数年平均增长率为x,则2020年底全市5G用户数为2(1+x)万户,2021年底全市5G用户数为2(1+x)2万户,依题意,得:2+2(1+x)+2(1+x)2=8.72,整理,得:x2+3x﹣1.36=0,解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去).故选:C.10.(2020•攀枝花)若关于x的方程x2﹣x﹣m=0没有实数根,则m的值可以为()A.﹣1B.−14C.0D.1【分析】根据关于x的方程x2﹣x﹣m=0没有实数根,判断出△<0,求出m的取值范围,再找出符合条件的m的值.【解析】∵关于x的方程x2﹣x﹣m=0没有实数根,∴△=(﹣1)2﹣4×1×(﹣m)=1+4m<0,解得:𝑚<−14,故选:A.11.(2020•怀化)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k=±4D.k=±2【分析】根据方程的系数结合根的判别式△=0,即可得出关于k的方程,解之即可得出k值.【解析】∵一元二次方程x2﹣kx+4=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×4=0,解得:k=±4.故选:C.12.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=600【分析】若设小道的宽为x米,则阴影部分可合成长为(35﹣2x)米,宽为(20﹣x)米的矩形,利用矩形的面积公式,即可得出关于x的一元二次方程,此题得解.【解析】依题意,得:(35﹣2x)(20﹣x)=600.故选:C.13.(2020•安徽)下列方程中,有两个相等实数根的是()A.x2+1=2xB.x2+1=0C.x2﹣2x=3D.x2﹣2x=0【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.【解析】A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.14.(2020•自贡)关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,则a的值为()A.12B.−12C.1D.﹣1【分析】根据一元二次方程的定义及根的判别式△=0,即可得出关于a的一元一次不等式及一元一次方程,解之即可得出a的值.【解析】∵关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,∴{𝑎≠0△=(−2)2−4×𝑎×2=0,∴a=12.故选:A.15.(2020•滨州)对于任意实数k,关于x的方程12x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.【解析】12x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4×12×(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.16.(2020•黔东南州)若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.48【分析】解方程得出x=4,或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.【解析】如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,∴菱形ABCD的周长=4AB=24.故选:B.17.(2020•衢州)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=442【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x,根据“2月份的180万只,4月份的利润将达到461万只”,即可得出方程.【解析】从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.18.(2020•铜仁市)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于()A.7B.7或6C.6或﹣7D.6【分析】当m=4或n=4时,即x=4,代入方程即可得到结论,当m=n时,即△=(﹣6)2﹣4×(k+2)=0,解方程即可得到结论.【解析】∵m、n、4分别是等腰三角形(非等边三角形)三边的长,∴当m=4或n=4时,即x=4,∴方程为42﹣6×4+k+2=0,解得:k=6,当m=n时,即△=(﹣6)2﹣4×(k+2)=0,解得:k=7,综上所述,k的值等于6或7,故选:B.19.(2020•遵义)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5B.10C.11D.13【分析】利用根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解析】根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.20.(2020•湖州)已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.【解析】∵△=b2﹣4×(﹣1)=b2+4>0,∴方程有两个不相等的实数根.故选:A.21.(2020•新疆)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+14=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=0【分析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.【解析】A.此方程判别式△=(﹣1)2﹣4×1×14=0,方程有两个相等的实数根,不符合题意;B.此方程判别式△=22﹣4×1×4=﹣12<0,方程没有实数根,不符合题意;C.此方程判别式△=(﹣1)2﹣4×1×2=﹣7<0,方程没有实数根,不符合题意;D.此方程判
本文标题:专题05一元二次方程(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】
链接地址:https://www.777doc.com/doc-11223755 .html