您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 专题06 反比例函数(第01期)-2019年中考真题数学试题分项汇编(原卷版)
专题06反比例函数1.(2019•安徽)已知点A(1,–3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为A.3B.13C.–3D.–132.(2019•广西)若点(–1,y1),(2,y2),(3,y3)在反比例函数y=kx(k0)的图象上,则y1,y2,y3的大小关系是A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y13.(2019•江西)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下列说法正确的是A.反比例函数y2的解析式是y2=–8xB.两个函数图象的另一交点坐标为(2,–4)C.当x–2或0x2时,y1y2D.正比例函数y1与反比例函数y2都随x的增大而增大4.(2019•河北)如图,函数y=1(0)1(0)xxxx的图象所在坐标系的原点是A.点MB.点NC.点PD.点Q5.(2019•黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=1x上,顶点B在反比例函数y=5x上,点C在x轴的正半轴上,则平行四边形OABC的面积是A.32B.52C.4D.66.(2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=1kx上,点A关于x轴的对称点B在双曲线y=2kx,则k1+k2的值为__________.7.(2019•山西)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(–4,0),点D的坐标为(–1,4),反比例函数y=kx(x>0)的图象恰好经过点C,则k的值为__________.8.(2019•福建)如图,菱形ABCD顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠BAD=30°,则k=__________.9.(2019•吉林)已知y是x的反比例函数,并且当x=2时,y=6.(1)求y关于x的函数解析式;(2)当x=4时,求y的值.10.(2019•广东)如图,一次函数y=k1x+b的图象与反比例函数y=2kx的图象相交于A、B两点,其中点A的坐标为(–1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>2kx的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.11.(2019•甘肃)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1x20时,比较y2与y1的大小关系.12.(2019•河南)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=4x;由周长为m,得2(x+y)=m,即y=–x+2m.满足要求的(x,y)应是两个函数图象在第__________象限内交点的坐标.(2)画出函数图象函数y=4x(x>0)的图象如图所示,而函数y=–x+2m的图象可由直线y=–x平移得到.请在同一直角坐标系中直接画出直线y=–x.(3)平移直线y=–x,观察函数图象①当直线平移到与函数y=4x(x>0)的图象有唯一交点(2,2)时,周长m的值为__________;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论若能生产出面积为4的矩形模具,则周长m的取值范围为__________.13.(2019•兰州)如图,在平面直角坐标系xOy中,反比例函数y=kx(k≠0)的图象经过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC,OA.(1)求反比例函数y=kx(k≠0)的表达式;(2)若四边形ACBO的面积是33,求点A的坐标.
本文标题:专题06 反比例函数(第01期)-2019年中考真题数学试题分项汇编(原卷版)
链接地址:https://www.777doc.com/doc-11223870 .html