您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 药学 > 2019初二数学期末模拟试题
-1-七年级数学上册第三次测试题第Ⅰ卷一、选择题(共12小题,每题3分,共36分)1、在实数:32017π932π82018,,,,,,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),5429,,无理数的个数为()A.4B.5C.6D.72、下列各式中,正确的是()A.2(3)3B.233C.233D.2333、对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(2,0)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y24、如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.85、如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为()A.70°B.48°C.45°D.60°6、直线233yx与直线ya(a为常数)的交点在第四象限,则a可能的值为(D)A.3B.4C.-3D.-47、如图,△AOB是边长为2的等边三角形,顶点A的坐标是()A.(,)B.(,﹣1)C.(﹣1,)D.(,﹣1)8、在平面直角坐标系中,将直线l1:y=﹣4x﹣1平移后,得到直线l2:y=﹣4x+7,则下列平移操作方法正确的是()A.将l1向右平移8个单位长度B.将l1向右平移2个单位长度C.将l1向左平移2个单位长度D.将l1向下平移8个单位长度9、如图,圆柱形容器的高为1.2m,底面周长为1m.在容器内壁离容器底部0.3m的点B处有一只蚊子,此时一只壁虎正好在容器外壁离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为(容器厚度忽略不计).()-2-A.1.3mB、1.4mC.1.5mD.2m10、如图,在平面直角坐标系中,菱形ABCD的顶点A、D的坐标分别为(﹣3,0)、(0,4),若直线y=﹣2x+b与菱形ABCD有公共点,则b的取值范围是()A.﹣6≤b≤4B.4≤b≤8C.﹣6≤b≤8D.﹣6≤b≤1411、己知,如图1-8,在Rt△ABC中,∠C=90,以Rt△ABC的三边为斜边分别向外作三个等腰直角三角形,其中∠H、∠E、∠F是直角,若斜边AB=3,则图中阴影部分的面积为()A.B.C.92D.1312、如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.2第Ⅱ卷二、填空题(共5小题,每题4分,共20分)13、数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.14、如图,正方形ABCD的边长为13,以CD为斜边向外作Rt△CDE,若点A到CE的距离为17,则CE=________.15、在Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,且BD=16cm,则AC=.16、如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=.17、如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1…过点A1作y轴的垂线交L2于点A2,过点-3-A2作x轴的垂线交于点A3,过点A3作y轴的垂线交L2于点A4,依次进行下去,则点A2018的坐标为.三、解答题18.(6分)已知a是16的算术平方根,b是9的平方根,c是﹣27的立方根,求a2+b2+c3+a﹣c+2的值.19.(8分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.20.(8分)一辆汽车在公路上匀速行驶,下表记录的是汽车在加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:行驶时间x(时)0122.5余油量y(升)100806050(1)小明分析上表中所给的数据发现x,y成一次函数关系,试求出它们之间的函数表达式(不要求写出自变量的取值范围);(2)求汽车行驶4.2小时后,油箱内余油多少升?21.(10分)如图所示,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.22.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的41?若存在求出此时点M的坐标;若不存在,说明理由-4-23.(10分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.24.(12分)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=时,结论AM=MN仍然成立.(直接写出答案)七年级数学上册第三次测试题答案一、选择题(共12小题,每题3分,共36分)123456789101112ABDBBDCBADCA二、填空题(共5小题,每题4分,共20分)13、或14、12或515、24cm16、15°17、(﹣21009,21009)三、解答题18.(6分)解:因为a是16的算术平方根,所以a=4,所以a2=16,又因为b是9的平方根,所以b2=9,因为c是﹣27的互方根,所以c3=﹣27,c=﹣3,所以a2+b2+c3+a﹣c+2=16+9﹣27+4+3+2=7.19.(8分)解:(1)△A1B1C1如图所示,B1(﹣4,2);(2)△A2B2C2如图所示,B2(﹣4,﹣2);(3)△PAB如图所示,P(2,0).20.(8分)解:(1)由x,y成一次函数关系可设y=kx+b,将(0,100),(1,80)代入上式得:,解得:,则它们之间的函数表达式为:y=﹣20x+100;-5-(2)当x=4.2时,由y=﹣20×4.2+100=16,即汽车行驶4.2小时后,油箱内余油16升.21.(10分)(1)证明:∵∠DOB=90°﹣∠AOD,∠AOC=90°﹣∠AOD,∴∠BOD=∠AOC,又∵OC=OD,OA=OB,在△AOC和△BOD中,∴△AOC≌△BOD(SAS);(2)解:∵△AOC≌△BOD,∴AC=BD=2,∠CAO=∠DBO=45°,∴∠CAB=∠CAO+∠BAO=90°,∴CD===.22.(10分)23.(10分)解:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.∴y1=;y2=3000x(1﹣25%)=2250x,∴y2=2250x;-6-(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+900=2100×5+900=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠24.(12分)(1)证明:在边AB上截取AE=MC,连接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分线上一点,∴∠NCP=45°,∴∠MCN=135°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:结论AM=MN还成立证明:在边AB上截取AE=MC,连接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)解:若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,则当∠AMN=时,结论AM=MN仍然成立.-7-
本文标题:2019初二数学期末模拟试题
链接地址:https://www.777doc.com/doc-1230672 .html