您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 21.2.2 公式法1
第1页共2页21.2.2公式法1.知道一元二次方程根的判别式的概念.2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围.3.经历求根公式的推导过程并会用公式法解简单的一元二次方程.一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x2+3x-4=0;(2)x2-x+14=0;(3)x2-x+1=0.解析:根据根的判别式我们可以知道当b2-4ac≥0时,方程才有实数根,而b2-4ac0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x2-x+14=0,a=1,b=-1,c=14.∴b2-4ac=(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程没有实数根.方法总结:给出一个一元二次方程,不解方程,可由b2-4ac的值的符号来判断方程根的情况.当b2-4ac>0时,一元二次方程有两个不相等的实数根;当b2-4ac=0时,一元二次方程有两个相等的实数根;当b2-4ac<0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A.a2B.a2C.a2且a≠1D.a-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a-1不为0.即4-4(a-1)>0且a-1≠0,解得a<2且a≠1.选C.方法总结:若方程有实数根,则b2-4ac≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x的方程2x2+kx-1=0,求证:方程有两个不相等的实数根.证明:Δ=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即Δ>0,∴方程2x2+kx-1=0有两个不相等的实数根.方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把第2页共2页一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x,则另一个正方形的边长是(10-x),由题可得,x2+(10-x)2=48.化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-40,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程【类型一】用公式法解一元二次方程用公式法解下列方程:(1)2x2+x-6=0;(2)x2+4x=2;(3)5x2-4x+12=0;(4)4x2+4x+10=1-8x.解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a,b,c的值,并计算b2-4ac的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a=2,b=1,c=-6,b2-4ac=12-4×2×(-6)=1+48=49.∴x=-b±b2-4ac2a=-1±492×2=-1±74,即原方程的解是x1=-2,x2=32.(2)将方程化为一般形式,得x2+4x-2=0.∵b2-4ac=24,∴x=-4±242=-2±6.∴原方程的解是x1=-2+6,x2=-2-6.(3)∵b2-4ac=-2240,∴原方程没有实数根.(4)整理,得4x2+12x+9=0.∵b2-4ac=0,∴x1=x2=-32.方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a,b,c的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为()A.7B.3C.7或3D.无法确定解析:解一元二次方程x2-10x+21=0,得x1=3,x2=7.根据三角形三边的关系,第三边还应满足4<x<8.所以第三边的长x=7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.
本文标题:21.2.2 公式法1
链接地址:https://www.777doc.com/doc-12429664 .html