您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 其它综合 > 全等三角形教案【最新5篇】
全等三角形教案【最新5篇】每位老师不可或缺的课件是教案课件,因此教案课件可能就需要每天都去写。教案课件如果写好,避免老师遗漏重点内容。三一刀客的编辑强烈推荐1篇非常实用的“全等三角形教案【最新5篇】”给大家参考,希望这篇文章对您的学习或工作有所帮助!全等三角形教案篇【第一篇】教学目标:1、知识目标:1熟记边角边公理的内容;2能应用边角边公理证明两个三角形全等.2、能力目标:(1)通过“边角边”公理的运用,提高学生的逻辑思维能力;(2)通过观察几何图形,培养学生的识图能力.3、情感目标:(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用公理证明两个三角形全等.教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.教学用具:直尺、微机教学方法:自学辅导式教学过程:1、公理的发现1画图:(投影显示)教师点拨,学生边学边画图.2实验让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)这里一定要让学生动手操作.3公理启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)作用:是证明两个三角形全等的依据之一.应用格式:强调:1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.3、平面几何中常要证明角相等和线段相等,其证明常用方法:证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.2、公理的应用1讲解例1.学生分析完成,教师注重完成后的总结.分析:(设问程序)“SAS”的三个条件是什么?已知条件给出了几个?由图形可以得到几个条件?解:(略)2讲解例2投影例2:例2如图2,AE=CF,AD∥BC,AD=CB,求证:学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书.教师强调证明格式:用大括号写出公理的三个条件,最后写出结论.3讲解例3(投影)证明:(略)学生分析思路,写出证明过程.(投影展示学生的作业,教师点评)4讲解例4(投影)证明:(略)学生口述过程.投影展示证明过程.教师强调证明线段相等的几种常见方法.5讲解例5(投影)证明:(略)学生思考、分析、讨论,教师巡视,适当参与讨论.师生共同讨论后,让学生口述证明思路.教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.3、课堂小结:(1)判定三角形全等的方法:SAS(2)公理应用的书写格式(3)证明线段、角相等常见的方法有哪些?让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.6、布置作业a书面作业P56#6、7b上交作业P57B组1全等三角形教案篇【第二篇】尊敬的各位领导、教育同仁:大家好:我来自于北安管理局龙门农场中学。今天,我就我们团队《三角形全等的判定(二)》就是用SAS的方法判定两个三角形全等这一节课的课件制作和使用向大家做一下说明,希望能和大家共勉!一、课件设计的意图:现在教学中我们使用的是新教材,新教材向我们提供的是一种教学素材,新教材有些知识点较旧教材难度有所降低,但对知识的手段要求更高了,灵活性更强了,解决问题的方法更多了,这就要求教师备课时要充分挖掘教材,领会课程标准的要求,深入揣摩编者的意图,由于八年级的学生已经具备了抽象思维能力,实践能力和探索能力,这就要求教师把教学内容要重新进行整合。数学《新课程标准》要求数学教学是数学活动的教学,教学过程中从实际出发,关注学生自主学习合作交流的意识,充分体现教师是学生学习活动的组织者,引导者、合作者,本节课是结合具体的数学活动内容采用“问题情境—建立模型—解释—应用拓展”的模式和结构展开,让学生经历知识的形成与应用的过程,从而增强学生学习数学的热情。这就要求数学教师在实际数学教学中充分利用现代化教学手段,创造性地使用教材,积极开发、利用各种教学资源,合理利用现代信息技术,把信息技术更好地应用到数学教学中去。二、课件的作用:多媒体辅助教学在现代化数学教学中起着越来越重要的作用,其教学手段具有直观性,内容具有丰富性,特别是在许多无法用实物教学的过程中起着无可替代的作用。它能极大地激发学生的学习兴趣,以形象具体的图、文、声、动等手段活跃课堂气氛,在数学教学中能克服许多常规教学中无法解决的困难,便于在短时间内让不同层次的学生得到相应的知识,同时增大课堂容量,对于提高学生的知识水平,培养学生的创新思维有着传统教学中无法比拟的优势,因此,我们把这一节课以课件的形式展示给学生们,学生们在这些丰富多彩以及动感的学习环境中,对教学内容更容易领会和掌握。三、课件效果预测:我们的课件制作采用当今操作比较简单,应用比较广,省时、省力的POWERPORT软件,该软件动感也比较强,是非常易于操作的一个软件平台。首先,我们用激励性的语言和一只展翅飞翔的鹰做了一个片头,这为学生们学习本节课的知识充满了自信,也很给力,同时使心情得到放松,让学生在轻松愉快中去学习。接着,我们用一个生活当中的实际问题导入这节课,让学生体会到数学来源于现实生活,同时又反作用于现实生活。由于这个问题在课堂上是无法用实物教学的,所以我们把这一问题制作成幻灯片,让学生通过联想,眼前呈现现实情境,使学生身临其境,同时,提高了学生的学习兴趣,激活了学生学习探究的欲望。同时,我们把其它的内容也制作成了幻灯片,来实现图形和文字等一些要素的结合,使教师利用多媒体教学实现和学生更好地互动,并节省了一些时间,扩充了知识的范围,增加了课堂的容量,优化了课堂教学,从而高效地完成教学目标的过程。在课件的制作上,我们把有的图形设计成动画,使学生对知识的理解更直观,更形象了,避免传统式枯燥的说教,使学生在轻松愉悦中掌握了知识,同时,难点得到突破。并在文字的设计上,我们把关键的字和词配上颜色,加深对学生的印象,使重点得到突出,详略得当。四、课件的制作力求创新:我们对这节课的课件制作上尽量简洁实用,突出实效性,避免出现一些花哨的画面,干扰学生的学习,分散学生的注意力,达到课件使用与课堂教学的完美结合。同时,我们并没有完全依赖于课件教学,还是以教材为主线,以课件为辅的教学理念充实课堂教学。以上就是我们团队的课件制作的相关信息,敬请各位专家、老师提出宝贵意见。谢谢大家!全等三角形教案篇【第三篇】1熟记边角边公理的内容;2能应用边角边公理证明两个三角形全等。2、能力目标:(1)通过“边角边”公理的运用,提高学生的逻辑思维能力;(2)通过观察几何图形,培养学生的识图能力。3、情感目标:(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的.习惯;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。3、平面几何中常要证明角相等和线段相等,其证明常用方法:证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质。1讲解例1。学生分析完成,教师注重完成后的总结。“SAS”的三个条件是什么?已知条件给出了几个?投影例2:例2如图2,AE=CF,AD∥BC,AD=CB,求证:学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书。教师强调证明格式:用大括号写出公理的三个条件,最后写出结论。学生分析思路,写出证明过程。学生口述过程。投影展示证明过程。教师强调证明线段相等的几种常见方法。学生思考、分析、讨论,教师巡视,适当参与讨论。师生共同讨论后,让学生口述证明思路。教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。(3)证明线段、角相等常见的方法有哪些?让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。全等三角形教案篇【第四篇】教材内容分析:本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。教学目标:1.了解全等形、全等三角形的概念;理解全等三角形的性质;2.能够准确找出全等三角形的对应元素,逐步培养学生的识图能力;3.让学生通过观察生活中的全等形和动手操作获得全等三角形的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。教学重难点及突破:重点:全等三角形的.概练和性质;难点:能在全等变换中准确找到对应角、对应边。教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。教学准备:1.教师准备:多媒体课件、剪刀、白纸等;2.学生准备:白纸、剪刀等。教学流程:创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。教学过程设计:一、创设情境,引入新课。1、与学生谈话,努力走近学生之中。2、游戏情景,引入新课出示课件:大家来找茬游戏引导:1、观察两副图形在形状、大小、位置方面的共同点2、两副图形形状、大小若相同该如何检验?引导:什么样的图形叫做全等形?定义:能够完全重合的两个图形叫做全等形;列举生活中的实例(一百元人民币)感知全等形。二、合作交流,探索新知。1、手脑并用,感受新知用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。2、观察诱导,探究新知。(1)全等三角形相关概念引导观察:课件操作演示两个三角形完全重合。引导学生类比得出全等三角形定义;中国人民邮政能够完全重合的两个三角形叫做全等三角形引导学生概括对应顶点、对应边、对应角定义;全等三角形中,互相重合的顶点叫对应顶点.互相重合的边叫对应边.互相重合的角叫对应角。(2)全等三角形的表达式引导学生书写全等三角形的表达式:△ABC≌△DEF,读作:△ABC全等于△DEF。温馨提示:①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题(3)全等三角形性质引导学生观察并概括全等三角形性质全等三角形的性质:全等三角形的对应边相等,对应角相等。用几何语言表达全等三角形性质:∵△ABC≌△DEF(已知)∴AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)3、合作交流,探究新知(1
本文标题:全等三角形教案【最新5篇】
链接地址:https://www.777doc.com/doc-12714496 .html