您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【新高考复习】第6讲 离散型随机变量的均值与方差
第6讲离散型随机变量的均值与方差一、选择题1.已知离散型随机变量X的概率分布列为X135P0.5m0.2则其方差D(X)=()A.1B.0.6C.2.44D.2.4解析由0.5+m+0.2=1得m=0.3,∴E(X)=1×0.5+3×0.3+5×0.2=2.4,∴D(X)=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44.答案C2.(2017·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100B.200C.300D.400解析设没有发芽的种子有ξ粒,则ξ~B(1000,0.1),且X=2ξ,∴E(X)=E(2ξ)=2E(ξ)=2×1000×0.1=200.答案B3.已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为()A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1解析由二项分布X~B(n,p)及E(X)=np,D(X)=np·(1-p)得2.4=np,且1.44=np(1-p),解得n=6,p=0.4.故选B.答案B4.已知随机变量X+η=8,若X~B(10,0.6),则E(η),D(η)分别是()A.6,2.4B.2,2.4C.2,5.6D.6,5.6解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,D(η)=(-1)2D(X)=10×0.6×0.4=2.4.答案B5.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是()A.4B.4.5C.4.75D.5解析由题意知,X可以取3,4,5,P(X=3)=1C35=110,P(X=4)=C23C35=310,P(X=5)=C24C35=610=35,所以E(X)=3×110+4×310+5×35=4.5.答案B二、填空题6.设X为随机变量,X~Bn,13,若随机变量X的数学期望E(X)=2,则P(X=2)等于________.解析由X~Bn,13,E(X)=2,得np=13n=2,∴n=6,则P(X=2)=C261321-134=80243.答案802437.随机变量ξ的取值为0,1,2.若P(ξ=0)=15,E(ξ)=1,则D(ξ)=________.解析设P(ξ=1)=a,P(ξ=2)=b,则15+a+b=1,a+2b=1,解得a=35,b=15,所以D(ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.答案258.(2017·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分别是7000元、5600元、4200元,则参加此次大赛获得奖金的期望是________元.解析由题意知a+2a+4a=1,∴a=17,∴获得一、二、三等奖的概率分别为17,27,47,∴所获奖金的期望是E(X)=17×7000+27×5600+47×4200=5000元.答案5000三、解答题9.(2017·成都诊断)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:态度调查人群应该取消应该保留无所谓在校学生2100人120人y人社会人士600人x人z人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流.求第一组中在校学生人数ξ的分布列和数学期望.解(1)因为抽到持“应该保留”态度的人的概率为0.05,所以120+x3600=0.05,解得x=60.所以持“无所谓”态度的人数为3600-2100-120-600-60=720,所以应在持“无所谓”态度的人中抽取720×3603600=72人.(2)由(1)知持“应该保留”态度的一共有180人,所以在所抽取的6人中,在校学生为120180×6=4人,社会人士为60180×6=2人,于是第一组在校学生人数ξ=1,2,3,P(ξ=1)=C14C22C36=15,P(ξ=2)=C24C12C36=35,P(ξ=3)=C34C02C36=15,所以ξ的分布列为ξ123P153515所以E(ξ)=1×15+2×35+3×15=2.10.(2017·郑州一模)在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望.解(1)设A表示事件:“媒体甲选中3号歌手”,B表示事件:“媒体乙选中3号歌手”,C表示事件:“媒体丙选中3号歌手”,则P(A)=C14C25=25,P(B)=C24C35=35,∴媒体甲选中3号且媒体乙未选中3号歌手的概率为P(AB)=25×1-35=425.(2)P(C)=C25C36=12,由已知得X的可能取值为0,1,2,3,P(X=0)=P(ABC)=1-25×1-35×1-12=325.P(X=1)=P(ABC)+P(ABC)+P(ABC)=25×1-35×1-12+1-25×35×1-12+1-25×1-35×12=1950,P(X=2)=P(ABC)+P(ABC)+P(ABC)=25×35×1-12+25×1-35×12+1-25×35×12=1950,P(X=3)=P(ABC)=25×35×12=325,∴X的分布列为X0123P32519501950325∴E(X)=0×325+1×1950+2×1950+3×325=32.11.从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)=()A.85B.65C.45D.25解析由题意,X~B5,3m+3,又E(X)=5×3m+3=3,∴m=2,则X~B5,35,故D(X)=5×35×1-35=65.答案B12.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E(ξ)为()A.16B.13C.12D.23解析依题意得,ξ的所有可能取值是0,1,2.且P(ξ=0)=C37C39=512,P(ξ=1)=C27·A22C39=12,P(ξ=2)=C17C39=112,因此E(ξ)=0×512+1×12+2×112=23.答案D13.马老师从课本上抄录一个随机变量ξ的分布列如下表:x123p(ξ=x)?!?请小牛同学计算ξ的均值.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.解析设“?”处的数值为x,则“!”处的数值为1-2x,则E(ξ)=1×x+2×(1-2x)+3x=x+2-4x+3x=2.答案214.计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X40X8080≤X≤120X120发电机最多可运行台数123若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?解(1)依题意,p1=P(40X80)=1050=0.2,p2=P(80≤x≤120)=3550=0.7,p3=P(X120)=550=0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为p=C04(1-p3)4+C14(1-p3)3p3=9104+4×9103×110=0.9477.(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.②安装2台发电机的情形.依题意,当40X80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40X80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10000,因此P(Y=10000)=P(X≥80)=p2+p3=0.8.由此得Y的分布列如下:Y420010000P0.20.8所以,E(Y)=4200×0.2+10000×0.8=8840.③安装3台发电机的情形.依题意,当40X80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40X80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此P(Y=9200)=P(80≤X≤120)=p2=0.7;当X120时,三台发电机运行,此时Y=5000×3=15000,因此P(Y=15000)=P(X120)=p3=0.1.因此得Y的分布列如下:Y3400920015000P0.20.70.1所以,E(Y)=3400×0.2+9200×0.7+15000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.
本文标题:【新高考复习】第6讲 离散型随机变量的均值与方差
链接地址:https://www.777doc.com/doc-12789011 .html