您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 专题21 概率与统计的综合运用(13大题型)(练习)(原卷版)
专题21概率与统计的综合运用目录01求概率及随机变量的分布列与期望.................................................................................................202超几何分布与二项分布....................................................................................................................303概率与其它知识的交汇问题............................................................................................................404期望与方差的实际应用....................................................................................................................605正态分布与标准正态分布................................................................................................................806统计图表及数字特征.....................................................................................................................1007线性回归与非线性回归分析..........................................................................................................1308独立性检验.....................................................................................................................................1509与体育比赛规则有关的概率问题..................................................................................................1810决策型问题.....................................................................................................................................2011递推型概率命题.............................................................................................................................2112条件概率、全概率公式、贝叶斯公式...........................................................................................2313高等背景下的概统问题..................................................................................................................2501求概率及随机变量的分布列与期望1.(2022•甲卷)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.2.(2024·河南·统考模拟预测)盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.(1)求取出的3个小球上的数字两两不同的概率;(2)记取出的3个小球上的最小数字为X,求X的分布列及数学期望EX.3.(2024·全国·模拟预测)某科研所计划招聘两名科研人员,共有4人报名应聘.科研所组织了专业能力、创新意识和写作水平三场测试,每场测试满分100分,每名选手在三场测试中的得分分别按50%,30%和20%计入总分,按总分排序,若总分相同,则依次按专业能力、创新意识和写作水平的得分从高到低排序,前两名录取.下表是4名应聘者的三场测试成绩:项目选手1选手2选手3选手4专业能力/分85808284创新意识/分80808582写作水平/分86858688(1)该科研所应招聘哪两名选手?并说明你的理由.(2)该科研所要求新招聘的两名科研人员上岗前参加线上培训.已知专业能力、创新意识和写作水平各有两个线上报告,培训者需从每个项目的两个报告中选择一个学习,记新招聘的两名科研人员参加学习的相同报告的数目为X,求X的概率分布列和数学期望.4.(2024·全国·模拟预测)班会课上,甲、乙两位同学参加了“心有灵犀”活动:从5个成语中随机抽取3个,甲同学负责比划,乙同学负责猜成语.甲会比划其中3个,甲会比划的成语,乙猜对的概率为12,甲不会比划的成语,乙无法猜对.(1)求甲乙配合猜对2个成语的概率;(2)设甲乙配合猜对成语个数为X,求X的分布列和数学期望.02超几何分布与二项分布5.(2024·云南曲靖·高三曲靖一中校考阶段练习)某兴趣小组利用所学统计与概率知识解决实际问题.(1)现有甲池塘,已知小池塘里有10条鲤鱼,其中红鲤鱼有4条.若兴趣小组捉取3次,每次从甲池塘中有放回地捉取一条鱼记录相关数据.用X表示其中捉取到红鲤鱼的条数,请写出X的分布列,并求出X的数学期望EX.(2)现有乙池塘,已知池塘中有形状大小相同的红鲤鱼与黑鲤鱼共10条,其中红鲤鱼有010,aaaN条,身为兴趣小组队长的骆同学每次从池塘中捉了1条鱼,做好记录后放回池塘,设事件A为“从池塘中捉取鱼3次,其中恰有2次捉到红鲤鱼”.当0aa时,事件A发生的概率最大,求0a的值.6.(2024·云南昆明·高三云南师大附中校考阶段练习)某校高一年级举行数学史知识竞赛,每个同学从10道题中一次性抽出4道作答.小张有7道题能答对,3道不能答对;小王每道答对的概率均为(01)pp,且每道题答对与否互不影响.(1)分别求小张,小王答对题目数的分布列;(2)若预测小张答对题目数多于小王答对题目数,求p的取值范围.7.(2024·广东肇庆·统考一模)在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号n次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为X.(1)当6n时,求2PX(2)已知切比雪夫不等式:对于任一随机变最Y,若其数学期望EY和方差DY均存在,则对任意正实数a,有21DYPYEYaa.根据该不等式可以对事件“YEYa”的概率作出下限估计.为了至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数n的最小值.03概率与其它知识的交汇问题8.(2024·全国·高三专题练习)如图,已知三棱锥PABC的三条侧棱PA,PB,PC两两垂直,且PAa,PBb,PCc,三棱锥PABC的外接球半径2R.(1)求三棱锥PABC的侧面积S的最大值;(2)若在底面ABC上,有一个小球由顶点A处开始随机沿底边自由滚动,每次滚动一条底边,滚向顶点B的概率为12,滚向顶点C的概率为12;当球在顶点B处时,滚向顶点A的概率为23,滚向顶点C的概率为13;当球在顶点C处时,滚向顶点A的概率为23,滚向顶点B的概率为13.若小球滚动3次,记球滚到顶点B处的次数为X,求数学期望EX的值.9.(2024·全国·高三阶段练习)如图所示,一只蚂蚁从正方体1111ABCDABCD的顶点1A出发沿棱爬行,记蚂蚁从一个顶点到另一个顶点为一次爬行,每次爬行的方向是随机的,蚂蚁沿正方体上、下底面上的棱爬行的概率为16,沿正方体的侧棱爬行的概率为23.(1)若蚂蚁爬行n次,求蚂蚁在下底面顶点的概率;(2)若蚂蚁爬行5次,记它在顶点C出现的次数为X,求X的分布列与数学期望.10.(2024·安徽·蚌埠二中校联考模拟预测)某从事智能教育技术研发的科技公司开发了一个“AI作业”项目,并且在甲、乙两个学校的高一学生中做用户测试.经过一个阶段的试用,为了解“AI作业”对学生学习的促进情况,该公司随机抽取了200名学生,对他们“向量数量积”知识点掌握情况进行调查,样本调查结果如下表:甲校乙校使用AI作业不使用AI作业使用AI作业不使用AI作业基本掌握32285030没有掌握8141226用样本频率估计概率,并假设每位学生是否掌据“向量数量积”知识点相互独立.(1)从两校高一学生中随机抽取1人,估计该学生对“向量数量积”知识点基本掌握的概率;(2)从样本中没有掌握“向量数量积”知识点的学生中随机抽取2名学生,以表示这2人中使用AI作业的人数,求的分布列和数学期望;(3)从甲校高一学生中抽取一名使用“Al作业”的学生和一名不使用“AI作业”的学生,用“1X”表示该使用“AI作业”的学生基本掌握了“向量数量积”,用“X0”表示该使用“AI作业”的学生没有掌握“向量数量积”,用“1Y”表示该不使用“AI作业”的学生基本掌握了“向量数量积”,用“Y0”表示该不使用“AI作业”的学生没有掌握“向量数量积”.直接写出方差DX和DY的大小关系.(结论不要求证明)04期望与方差的实际应用11.(2024·北京西城·高三统考期末)生活中人们喜爱用跑步软件记录分享自己的运动轨迹.为了解某地中学生和大学生对跑步软件的使用情况,从该地随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款跑步软件,结果如下:跑步软件一跑步软件二跑步软件三跑步软件四中学生80604020大学生30202010假设大学生和中学生对跑步软件的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用跑步软件一的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X为这3人中最喜爱使用跑步软件二的人数,求X的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款跑步软件的频率依次为1x,2x,3x,4x,其方差为21s;样本中的大学生最喜爱使用这四款跑步软件的频率依次为1y,2y,3y,4y,其方差为22s;1x,2x,3x,4x,1y,2y,3y,4y的方差为23s.写出21s,22s,23s的大小关系.(结论不要求证明)12.(2024·广东东莞·高三统考期末)某区域中的物种C有A种和B种两个亚种.为了调查该区域中这两个亚种的数目比例(A种数目比B种数目少),某生物研究小组设计了如下实验方案:①在该区域中有放回的捕捉50个物种C,统计其中A种数目,以此作为一次试验的结果;②重复进行这个试验n次(其中*nN),记第i次试验中的A种数目为随机变量iX(1,2,,in);③记随机变量11niiXXn,利用X的期望EX和方差DX进行估算.设该区域中A种数目为M,B种数目为N,每一次试验都相互独立.(1)已知ijijEXXEXEX,ijijDXXDXDX,证明:
本文标题:专题21 概率与统计的综合运用(13大题型)(练习)(原卷版)
链接地址:https://www.777doc.com/doc-12826405 .html