您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 八年级数学下册一次函数经典题型精选
函数的定义1.下列各图给出了变量x与y之间的函数是:()自变量的取值范围1求下列函数中自变量x的取值范围:(1)y=3x-1;(2)y=2x2+7;(3)21xy;(4)2xy.2.求下列函数中自变量x的取值范围:(1)y=-2x-5x2;(3)y=x(x+3);(3)36xxy;(4)12xy.10.(2009黑龙江大兴安岭)函数1xxy中,自变量x的取值范围是.1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2xB.y=12xC.y=24xD.y=2x·2x求值求下列函数当x=2时的函数值:(1)y=2x-5;(2)y=-3x2;(3)12xy;(4)xy2.22.(12分)一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,x的值是多少?3.一架雪橇沿一斜坡滑下,它在时间t(秒)滑下的距离s(米)由下式给出:s=10t+2t2.假如滑到坡底的时间为8秒,试问坡长为多少?xyoAxyoBxyoDxyoC566-2xy1234-2-15-14321O作图象例1画出函数y=x+1的图象.分析要画出一个函数的图象,关键是要画出图象上的一些点,为此,首先要取一些自变量的值,并求出对应的函数值.解取自变量x的一些值,例如x=-3,-2,-1,0,1,2,3…,计算出对应的函数值.为表达方便,可列表如下:由这一系列的对应值,可以得到一系列的有序实数对:…,(-3,-2),(-2,-1),(-1,0),(0,1),(1,2),(2,3),(3,4),…在直角坐标系中,描出这些有序实数对(坐标)的对应点,如图所示.通常,用光滑曲线依次把这些点连起来,便可得到这个函数的图象,如图所示.这里画函数图象的方法,可以概括为列表、描点、连线三步,通常称为描点法.例2画出函数xy21的图象.分析用描点法画函数图象的步骤:分为列表、描点、连线三步.解列表:描点:用光滑曲线连线:1.在所给的直角坐标系中画出函数xy21的图象(先填写下表,再描点、连线).利用图像解决实际问题问题王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).问图中有一个直角坐标系,它的横轴(x轴)和纵轴(y轴)各表示什么?问如图,线段上有一点P,则P的坐标是多少?表示的实际意义是什么?看上面问题的图,回答下列问题:(1)小强让爷爷先上多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?三、实践应用例1王强在电脑上进行高尔夫球的模拟练习,在某处按函数关系式xxy58512击球,球正好进洞.其中,y(m)是球的飞行高度,x(m)是球飞出的水平距离.(1)试画出高尔夫球飞行的路线;(2)从图象上看,高尔夫球的最大飞行高度是多少?球的起点与洞之间的距离是多少?解(1)列表如下:在直角坐标系中,描点、连线,便可得到这个函数的大致图象.(2)高尔夫球的最大飞行高度是3.2m,球的起点与洞之间的距离是8m.例2小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你由图具体说明小明散步的情况.解小明先走了约3分钟,到达离家250米处的一个阅报栏前看了5分钟报,又向前走了2分钟,到达离家450米处返回,走了6分钟到家.2.一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是().正比例函数和待定系数法特别地,当b=0时,一次函数y=kx(常数k≠0)出叫正比例函数正比例函数也是一次函数,它是一次函数的特例.一次函数y=kx+b(k≠0)三、实践应用例1下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).例2已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.例3已知y+2与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.22.(8分)已知y=y1+y2,y1与x成正比例,y2与x-1成正比例,且x=3时y=4;x=1时y=2,求y与x之间的函数关系式,并在直角坐标系中画出这个函数的图象.一次函数、正比例函数以及它们的关系:函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0.特别地,当b=0时,一次函数y=kx(常数k≠0)出叫正比例函数(directproportionalfunction).正比例函数也是一次函数,它是一次函数的特例.正比例图象快速作图直线的平移请同学们在同一平面直角坐标系中画出下列函数的图象.(1)y=-x、y=-x+1与y=-x-2;(2)y=2x、y=2x+1与y=2x-2.例2直线521,321xyxy分别是由直线xy21经过怎样的移动得到的.例3说出直线y=3x+2与221xy;y=5x-1与y=5x-4的相同之处.五、检测反馈2.(1)将直线y=3x向下平移2个单位,得到直线;(2)将直线y=-x-5向上平移5个单位,得到直线;(3)将直线y=-2x+3向下平移5个单位,得到直线.3.函数y=kx-4的图象平行于直线y=-2x,求函数的表达式.4.一次函数y=kx+b的图象与y轴交于点(0,-2),且与直线213xy平行,求它的函数表达式.1.一次函数y=kx+b,当x=0时,y=b;当y=0时,kbx.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是0,kb;3.已知函数y=2x-4.(1)作出它的图象;(2)标出图象与x轴、y轴的交点坐标;(3)由图象观察,当-2≤x≤4时,函数值y的变化范围.4.一次函数y=3x+b的图象与两坐标轴围成的三角形面积是24,求b.图像位置与k,b的关系和单调性2.在同一直角坐标系中,画出函数132xy和y=3x-2的图象.问在你所画的一次函数图象中,直线经过几个象限.一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.特别地,当b=0时,正比例函数也有上述性质.当b>0,直线与y轴交于正半轴;当b<0时,直线与y轴交于正半轴.下面,我们把一次函数中k与b的正、负与它的图象经过的象限归纳列表为:三、实践应用例1已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值y随x的增大而减小?例2已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.k、b的符号k>0b>0k>0b<0k<0b>0k<0b<0图像的大致位置经过象限第象限第象限第象限第象限性质y随x的增大而y随x的增大而y随x的增大而y随x的增大而例3已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.(1)求m的值;(2)当x取何值时,0<y<4?1.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>bB.a=bC.a<bD.以上都不对6.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0B.y1+y2<0C.y1﹣y2>0D.y1﹣y2<09.已知直线y=kx+b不经过第三象限则下列结论正确的是()A.k>0,b>0;B.k<0,b>0;C.k<0,b<0;D.k<0,b≥0;10.已知一次函数y=kx+b,y随着x的增大而减小,且kb0,则在直角坐标系内它的大致图象是()(A)(B)(C)A.B.C.D.一次函数快速作图待定系数法问题1已知一个一次函数当自变量x=-2时,函数值y=-1,当x=3时,y=-3.能否写出这个一次函数的解析式呢?问题2已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.考虑这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的长度7.2厘米,与一次函数关系式中的两个x、y有什么关系?问题3若一次函数y=mx-(m-2)过点(0,3),求m的值三、实践应用例1已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y的值.例2已知一次函数的图象如下图,写出它的关系式.求交点坐标例3求直线y=2x和y=x+3的交点坐标.例4已知两条直线y1=2x-3和y2=5-x.(1)在同一坐标系内作出它们的图象;(2)求出它们的交点A坐标;(3)求出这两条直线与x轴围成的三角形ABC的面积;(4)k为何值时,直线2k+1=5x+4y与k=2x+3y的交点在每四象限.解(1)(2).5,3221xyxy解得.37,38yx所以两条直线的交点坐标A为37,38.(3)当y1=0时,x=23所以直线y1=2x-3与x轴的交点坐标为B(23,0),当y2=0时,x=5,所以直线y2=5-x与x轴的交点坐标为C(5,0).过点A作AE⊥x轴于点E,则124937272121AEBCSABC.(4)两个解析式组成的方程组为.32,4512yxkyxk解这个关于x、y的方程组,得.72,732kykx由于交点在第四象限,所以x>0,y<0.即.072,0732kk解得223k.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.1、已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积。2.直线232xy分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积;(2)过△AOB的顶点能不能画出直线把△AOB分成面积相等的两部分?如能,可以画出几条?写出这样的直线所对应的函数关系式.2、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;(1)求△COP的面积;(2)求点A的坐标及p的值;(3)若△BOP与△DOP的面积相等,求直线BD的函数解析式。Oxy-346-2FEDCBA(2,p)yxPOFEDCBA4.一次函数y=kx+b(k≠0)的图象经过点(3,3)和(1,-1).求它的函数关系式,并画出图象.5.陈华暑假去某地旅游,导游要大家上山时多带一件衣服,并介绍当地山区海拔每增加100米,气温下降0.6℃.陈华在山脚下看了一下随带的温度计,气温为34℃,乘缆车到山顶发现温度为32.2℃.求山高.一次函数与方程、方程
本文标题:八年级数学下册一次函数经典题型精选
链接地址:https://www.777doc.com/doc-1283817 .html