您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 与三角形有关的线段测试题及答案
与三角形有关的线段测试题一、选择题1、△ABC的三条边长分别是a、b、c,则下列各式成立的是()A.a+b=cB.a+bcC.a+bcD.a2+b2=c22、以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个3、已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是()A.2aB.-2bC.2a+2bD.2b-2c4、已知三角形的周长为15cm,其中的两边长都等于第三边长的2倍,则这个三角形的最短边长是()A.3cmB.4cmC.5cmD.6cm5、如图,∠ACB90°,AD⊥BC,BE⊥AC,CF⊥AB,△ABC中BC边上的高是()A.FCB.BEC.ADD.AE6、三角形的三条高在()A.三角形内部B.三角形外部C.三角形的边上D.三角形的内部、外部或与边重合7、如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短8、如图,△ABC中,∠C=90°,D、E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法中不正确的是()A.BC是△ABE边AE上的高B.BE是△ABD的中线C.BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC9、下列判断正确的是()(1)平分三角形内角的射线叫三角形的角平分线;(2)三角形的中线、角平分线都是线段;(3)一个三角形有三条角平分线和三条中线;(4)三角形的中线是经过顶点和对边中点的直线.A.(1)(2)(3)(4)B.(2)(3)(4)C.(3)(4)D.(2)(3)10、如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性二、填空题11、已知BD、CE是△ABC的高,直线BD、CE相交的成的角中有一个角是50°,则∠BAC等于________度.12、如图,在图(1)中,互不重叠的三角形共有4个,在图(2)中,互不重叠的三角形共有7个,在图(3)中,互不重叠的三角形共有10个,……,则在第(n)个图形中,互不重叠的三角形共有________个(用含n的代数式表示).13、如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=4cm2,则S阴影=________.二、解答题14、如图,△ABC中,AB=AC,D为AC的中点,△ABD的周长比△BDC的周长大2,且BC的边长是方程的解,求△ABC三边的长.15、已知△ABC的三边长为5,12,3x-4,周长为偶数,求整数x及周长.16、如图,草原上有4口油井,位于四边形ABCD的4个顶点,现在要建立一个维修站H,问H建在何处,才能使它到4口油井的距离之和最小?17、已知△ABC的周长为45cm,(1)若AB=AC=2BC,求BC的长;(2)若AB:BC:AC=2:3:4,求△ABC三条边的长.18、如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm的两个部分,求三角形各边的长.19、如图,在△ABC中,D是BC上一点,试说明下列不等式成立的理由.AB+BC+AC2CD.20、平面上有n个点(n≥3),且任意三点不在同一条直线上,过任意三点作三角形,一共能作出多少个不同的三角形?(1)分析:当平面上仅有3个点时,可作________个三角形;当有4个点时,可作________个三角形;当有5个点时,可作________个三角形;…(2)归纳:考察点的个数n和可作出的三角形的个数Sn发现:点的个数345…n可连成三角形的个数(3)推理_______________________________________________________________答案:1--10:BCDACDADDD11、50或13012、3n+113、1cm214、先求出k=BC=4.5,而△ABD的周长比△BDC的周长大2,所以AB比BC大2,即AB=AC=6.5.15、先求x的取值范围,∴12-53x-412+5,即,而x为整数,∴x=4、5或6.若周长12+5+3x-4=13+3x是偶数,则x为奇数,∴x=5,从而周长为5+12+3x-4=28.16、H建在段AC与BD的交点处,理由是:AC+BDAB+BC+CD+DA.17、(1)AB+AC+BC=45,5BC=45,BC=9cm;(2)设AB=2x,BC=3x,AC=4x,则2x+3x+4x=45,x=5,∴AB=2x=10cm,BC=3x=15cm,AC=20cm.18、因为BD是中线,所以AD=DC,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论.解:设AB=AC=2x,则AD=CD=x,(1)当AB+AD=30,BC+CD=24时,有2x+x=30,∴x=10,2x=20,BC=24-10=14,三边分别为:20cm,20cm,14cm.(2)当AB+AD=24,BC+CD=30,有2x+x=24∴x=8,BC=30-8=22,三边分别为:16cm,16cm,22cm.19、AB+BC+AC=AB+BD+CD+ACAD+AC+CDCD+CD=2CD.20、(1)1;4;10(2)(3)平面上有n个点,过不在同一条直线上的三点可以确定一个三角形,取第一个点A有n种取法,取第二个点B有(n-1)种取法,取第三个点C有(n-2)种取法,所以一共有n(n-1)(n-2)个三角形,但△ABC、△ACB、△BAC、△CBA、△CAB是同一个三角形,故应除以6,即.
本文标题:与三角形有关的线段测试题及答案
链接地址:https://www.777doc.com/doc-1286937 .html