您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 制造加工工艺 > 第四章-数控机床的伺服驱动系统(6学时)
1第四章数控机床的伺服系统1.概述2.常用驱动原件3.位移测量装置了解:常用伺服驱动原件工作原理理解:位移测量装置工作原理掌握:伺服驱动系统的定义、组成第四章数控机床的伺服驱动系统(6学时)4.1概述4.2常用驱动元件4.2.1步进电机一、步进电机概述步进电机及其驱动系统主要用于开环控制系统。它由步进电机驱动电源(又称步进电机驱动器)和步进电机组成。步进电机是将电脉冲信号转变为角位移或线位移的开环驱动元件。步进电机所用的电源与一般交、直流电机的电源也有区别,既不是正弦波,也不是恒定直流,而是脉冲电压、电流,所以有时也称为脉冲电机或电脉冲电机。在非超载的情况下,电机的转速、角位移只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制变得非常的简单、维修也较方便,而且为全数字化控制??。步进电机分类:1)步进电机按输出扭矩的大小,可分为快速步进电机与功率步进电机;2)按励磁相数,可分为三相、四相、五相甚至八相;3)按其运动方式,分旋转式、直线式、平面运动式和滚切运动式;4)按结构,可分为单段式(径向式)、多段式(轴向式)、印刷绕组式;5)按工作原理,可分为反应式、电磁式、永磁式、永磁感应子式(混合式)步进电机,其中反应式和混合式步进电机比较常用。不同类型步进电机,其工作原理、驱动装置也不完全相同。(对给定的电机体积,混合式步进电机产生的转矩比反应式的大,加上混合式步进电机的步距角常做得很小,因此在工作空间受到限制而需要小步距角和大转矩的情况下,常选用混合式步进电机。反应式步进电机和混合式步进电机的根本区别在于其转子是否具有永久磁性。反应式步进电机转子上没有永久磁钢,所以转子的机械惯量比混合式步进电机的转子惯量低,因此可以更快地加、减速。混合式步进电机转子有永久磁钢,所以在绕组未通电时,转子永久磁钢产生的磁通能产生自定位转矩,虽然这比绕组通电时产生的转矩小得多,但它确实是一种很有用的特性:使其在断电时,仍能保持转子得原来位置。反应式步进电机在断2电时靠干摩擦负载转矩或靠专门的磁定位或机械定位装置来实现定位。在实际应用中为提高加工精度,多采用小步距角的步进电机。)有待考证虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。实际应用中,主要控制步进电机的角位移、转速和方向(重点)。•步进电机定子绕组的通电状态每改变一次,它的转子便转过一个确定的角度,即步进电机的步距角•脉冲的频率决定着电机的转速•改变步进电机定子绕组的通电顺序,转子的旋转方向也随之改变二、反应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。下面以三相反应式步进电机为例说明步进电机的工作原理。1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。2、参数(1)步进电机的步距角由下式决定30360mkz若采用细分电路,则步距角由下式决定:0360mkz/细分数(2)若步进电机通电的脉冲频率为f,则步进电机的转速为60(/min)fnrsmzk(60f*/360,f的单位:个/s)其中:――步距角sn――步进电机的转速m――定子励磁绕组的相数z――转子的齿数k――通电方式系数,单拍时,k=1;双拍时,k=23、术语(1)相数:定子磁极对数。常用m表示。(2)拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A.(3)步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。(4)失步:电机运转时运转的步数,不等于理论上的步数。称之为失步。(5)失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。(6)最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。(7)最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。(8)运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。如下图所示:4其它特性还有惯频特性、起动频率特性等。(9)最高起动频率fq:电机正常起动时(不丢步)所能承受的最高控制频率,起动频率低于连续运动频率,因为起动时电机既要克服负载力矩,又要克服惯性力矩,且负载越大,fq越低。(10)连续运行频率(最高工作频率)fmax:步进电机连续工作时能接受的最高频率,因运行时转动惯量的影响比起动时大大减小,所以fmax》fq,它表明步进电机所能达到的最高速度三、驱动控制系统组成使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统,其方框图如下:1、脉冲信号的产生脉冲信号一般由单片机或CPU产生,一般脉冲信号的占空比为0.3-0.4左右,电机转速越高,占空比则越大。2、信号分配(由环形分配器完成)感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为1.8度;二相八拍为,步距角为0.9度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为1.8度;四相八拍为AB-B-BC-C-CD-D-AB,(步距角为0.9度)。3、功率放大功率放大是驱动系统最为重要的部分。步进电机在一定转速下的转矩取决于它的动态平均电流而非静态电流(而样本上的电流均为静态电流)。平均电流越大电机力矩越大,要达到平均电流大这就需要驱动系统尽量克服电机的反电势。因而不同的场合采取不同的的驱动方式,目前,驱动方式一般有以下几种:恒压、恒压串电阻、高低压驱动、恒流、细分数等。5为尽量提高电机的动态性能,将信号分配、功率放大组成步进电机的驱动电源。二相恒流斩波驱动电源与单片机及电机接线图如下:图单电压驱动电路工作原理图高低电压驱动电路工作原理6说明:CP接CPU脉冲信号(负信号,低电平有效)OPTO接CPU+5VFREE脱机,与CPU地线相接,驱动电源不工作DIR方向控制,与CPU地线相接,电机反转VCC直流电源正端GND直流电源负端A接电机引出线红线接电机引出线绿线B接电机引出线黄线接电机引出线蓝线步进电机一经定型,其性能取决于电机的驱动电源。步进电机转速越高,力距越大则要求电机的电流越大,驱动电源的电压越高。电压对力矩影响如下:4、细分驱动器在步进电机步距角不能满足使用的条件下,可采用细分驱动器来驱动步进电机,细分驱动器的原理是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机运转的。7四、步进电机的应用(一)步进电机的选择步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。1、步距角的选择电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度(三相电机)等。2、静力矩的选择步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)3、电流的选择静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压)综上所述选择电机一般应遵循以下步骤:84、力矩与功率换算步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下:P=Ω·MΩ=2π·n/60P=2πnM/60其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿·米P=2πfM/400(半步工作)其中f为每秒脉冲数(简称PPS)(二)应用中的注意点1、步进电机应用于低速场合---每分钟转速不超过1000转,(0.9度时6666PPS),最好在1000-3000PPS(0.9度)间使用,可通过减速装置使其在此间工作,此时电机工作效率高,噪音低。2、步进电机最好不使用整步状态,整步状态时振动大。3、由于历史原因,只有标称为12V电压的电机使用12V外,其他电机的电压值不是驱动电压伏值,可根据驱动器选择驱动电压(建议:57BYG采用直流24V-36V,86BYG采用直流50V,110BYG采用高于直流80V),当然12伏的电压除12V恒压驱动外也可以采用其他驱动电源,不过要考虑温升。4、转动惯量大的负载应选择大机座号电机。5、电机在较高速或大惯量负载时,一般不在工作速度起动,而采用逐渐升频提速,一电机不失步,二可以减少噪音同时可以提高停止的定位精度。6、高精度时,应通过机械减速、提高电机速度,或采用高细分数的驱动器来解决,也可以采用5相电机,不过其整个系统的价格较贵,生产厂家少,其被淘汰的说法是外行话。97、电机不应在振动区内工作,如若必须可通过改变电压、电流或加一些阻尼的解决。8、电机在600PPS(0.9度)以下工作,应采用小电流、大电感、低电压来驱动。9、应遵循先选电机后选驱动的原则。二、直流(DC)伺服电动机直流伺服电动机是将直流电能转换成机械能的旋转电动机。直流伺服电动机具有良好的调速特性,对伺服电机的调速性能要求高的设备中,大都采用DC伺服电动机驱动。直流伺服电动机的工作原理主要基于:电磁力定律:载流导体在磁场中要受到电磁力作用电磁感应定律:当导体在磁场中运动并切割磁力线时,导体中要产生感应电动势目前数控机床进给驱动中采用的直流电动机主要是大惯量宽速直流伺服电动机,占主导地位的是永久磁铁励磁式电动机直流伺服电动机结构较复杂,电刷、换向器需经常维护,电机转速受限,AC克服此缺点,因此AC伺服电动机有取代DC伺服电动机的趋势三、永磁交流伺服电机结构:定子、转子、检测元件工作原理:定子绕组接上三相交流电,产生旋转磁场,旋转磁场吸引转子同步旋转。矢量控制:直流伺服电机的调速性能好,控制简单(线性),如果能模拟直流电动机,使交流电机具有与直流电机近似的优良特性。为此,需将三相交变量转换为与之等效的直流量,然后按直流电动机的控制方法对其进行控制。直流主轴电动机的结构和普通直流电动机的结构基本相同,其主要区别是:在主磁极上除了绕有主磁极绕组外,还绕有补偿绕组,以便抵消转子反应磁动势对气隙主磁通的影响,改善电动机的调速性能;直流主轴电动机都采用轴向强迫通风冷却或热管冷却,以改善冷却效果。10直流主轴电动机的基本速度以下为恒转矩范围,在基本速度以上为恒功率范围。直流主轴电动机采用双域调速系统调速。永磁直流伺服电动机的定子磁极是一个永磁体,其转子分为普通型和小惯量型两类
本文标题:第四章-数控机床的伺服驱动系统(6学时)
链接地址:https://www.777doc.com/doc-1370206 .html