您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 抽象函数-题型大全(例题-含答案)
重庆书之香教育CHONGQINGEDUCATION1高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()fx的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x的代数式,从而求出()fx,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。例1:已知()211xfxx,求()fx.解:设1xux,则1uxu∴2()2111uufuuu∴2()1xfxx2.凑合法:在已知(())()fgxhx的条件下,把()hx并凑成以()gu表示的代数式,再利用代换即可求()fx.此解法简洁,还能进一步复习代换法。例2:已知3311()fxxxx,求()fx解:∵22211111()()(1)()(()3)fxxxxxxxxxx又∵11||||1||xxxx∴23()(3)3fxxxxx,(|x|≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。例3.已知()fx二次实函数,且2(1)(1)fxfxx+2x+4,求()fx.解:设()fx=2axbxc,则22(1)(1)(1)(1)(1)(1)fxfxaxbxcaxbxc=22222()24axbxacxx比较系数得2()41321,1,2222acaabcb∴213()22fxxx4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y=()fx为奇函数,当x0时,()lg(1)fxx,求()fx解:∵()fx为奇函数,∴()fx的定义域关于原点对称,故先求x0时的表达式。∵-x0,∴()lg(1)lg(1)fxxx,重庆书之香教育CHONGQINGEDUCATION2∵()fx为奇函数,∴lg(1)()()xfxfx∴当x0时()lg(1)fxx∴lg(1),0()lg(1),0xxfxxx例5.一已知()fx为偶函数,()gx为奇函数,且有()fx+1()1gxx,求()fx,()gx.解:∵()fx为偶函数,()gx为奇函数,∴()()fxfx,()()gxgx,不妨用-x代换()fx+()gx=11x………①中的x,∴1()()1fxgxx即()fx-1()1gxx……②显见①+②即可消去()gx,求出函数21()1fxx再代入①求出2()1xgxx5.赋值法:给自变量取特殊值,从而发现规律,求出()fx的表达式例6:设()fx的定义域为自然数集,且满足条件(1)()()fxfxfyxy,及(1)f=1,求()fx解:∵()fx的定义域为N,取y=1,则有(1)()1fxfxx∵(1)f=1,∴(2)f=(1)f+2,(3)(2)3ff……()(1)fnfnn以上各式相加,有()fn=1+2+3+……+n=(1)2nn∴1()(1),2fxxxxN二、利用函数性质,解()fx的有关问题1.判断函数的奇偶性:例7已知()()2()()fxyfxyfxfy,对一切实数x、y都成立,且(0)0f,求证()fx为偶函数。证明:令x=0,则已知等式变为()()2(0)()fyfyffy……①在①中令y=0则2(0)f=2(0)f∵(0)f≠0∴(0)f=1∴()()2()fyfyfy∴()()fyfy∴()fx为偶函数。2.确定参数的取值范围例8:奇函数()fx在定义域(-1,1)内递减,求满足2(1)(1)0fmfm的实数m的取值范围。解:由2(1)(1)0fmfm得2(1)(1)fmfm,∵()fx为函数,∴2(1)(1)fmfm又∵()fx在(-1,1)内递减,∴221111110111mmmmm3.解不定式的有关题目重庆书之香教育CHONGQINGEDUCATION3例9:如果()fx=2axbxc对任意的t有(2)2)ftft,比较(1)(2)(4)fff、、的大小解:对任意t有(2)2)ftft∴x=2为抛物线y=2axbxc的对称轴又∵其开口向上∴f(2)最小,f(1)=f(3)∵在[2,+∞)上,()fx为增函数∴f(3)f(4),∴f(2)f(1)f(4)五类抽象函数解法1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数。例1、已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。分析:由题设可知,函数f(x)是的抽象函数,因此求函数f(x)的值域,关键在于研究它的单调性。解:设,∵当,∴,∵,∴,即,∴f(x)为增函数。在条件中,令y=-x,则,再令x=y=0,则f(0)=2f(0),∴f(0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2f(-1)=-4,∴f(x)的值域为[-4,2]。例2、已知函数f(x)对任意,满足条件f(x)+f(y)=2+f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。分析:由题设条件可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。解:设,∵当,∴,则,即,∴f(x)为单调增函数。∵,又∵f(3)=5,∴f(1)=3。∴,∴,重庆书之香教育CHONGQINGEDUCATION4即,解得不等式的解为-1a3。2、指数函数型抽象函数例3、设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,对任何x和y,成立。求:(1)f(0);(2)对任意值x,判断f(x)值的正负。分析:由题设可猜测f(x)是指数函数的抽象函数,从而猜想f(0)=1且f(x)>0。解:(1)令y=0代入,则,∴。若f(x)=0,则对任意,有,这与题设矛盾,∴f(x)≠0,∴f(0)=1。(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对任意x,f(x)>0恒成立。例4、是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②;③f(2)=4。同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。分析:由题设可猜想存在,又由f(2)=4可得a=2.故猜测存在函数,用数学归纳法证明如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论正确。(2)假设时有,则x=k+1时,,∴x=k+1时,结论正确。综上所述,x为一切自然数时。3、对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数。例5、设f(x)是定义在(0,+∞)上的单调增函数,满足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值范围。分析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2。解:(1)∵,∴f(1)=0。(2),从而有f(x)+f(x-8)≤f(9),重庆书之香教育CHONGQINGEDUCATION5即,∵f(x)是(0,+∞)上的增函数,故,解之得:8<x≤9。例6、设函数y=f(x)的反函数是y=g(x)。如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由。分析:由题设条件可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜想g(a+b)=g(a)·g(b)正确。解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,∴g(m)=a,g(n)=b,从而,∴g(m)·g(n)=g(m+n),以a、b分别代替上式中的m、n即得g(a+b)=g(a)·g(b)。4、三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数。例7、己知函数f(x)的定义域关于原点对称,且满足以下三条件:①当是定义域中的数时,有;②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0。试问:(1)f(x)的奇偶性如何?说明理由。(2)在(0,4a)上,f(x)的单调性如何?说明理由。分析:由题设知f(x)是的抽象函数,从而由及题设条件猜想:f(x)是奇函数且在(0,4a)上是增函数(这里把a看成进行猜想)。解:(1)∵f(x)的定义域关于原点对称,且是定义域中的数时有,∴在定义域中。∵,∴f(x)是奇函数。(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)<f(x2),∴在(0,2a)上f(x)是增函数。重庆书之香教育CHONGQINGEDUCATION6又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即在(2a,4a)上f(x)>0。设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零。f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数。综上所述,f(x)在(0,4a)上是增函数。5、幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数。例8、已知函数f(x)对任意实数x、y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,。(1)判断f(x)的奇偶性;(2)判断f(x)在[0,+∞)上的单调性,并给出证明;(3)若,求a的取值范围。分析:由题设可知f(x)是幂函数的抽象函数,从而可猜想f(x)是偶函数,且在[0,+∞)上是增函数。解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为偶函数。(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数。(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故。抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下:重庆书之香教育CHONGQINGEDUCATION7一、定义域问题例1.已知函数的定义域是[1,2],求f(x)的定义域。解:的定义域是[1,2],是指,所以中的满足从而函数f(x)的定义域是[1,4]评析:一般地,已知函数的定义域是A,求f(x)的定义域问题,相当于已知中x的取值范围为A,据此求的值域问题。例2.已知函数的定义域是,求函数的定义域。解:的定义域是,意思是凡被f作用的对象都在中,由此可得所以函数的定义域是评析:这类问题的一般形式是:已知函数f(x)的定义域是A,求函数的定义域。正确理解函数符号及其定义域的含义是求解此类问题的关键。这类问题实质上相当于已知的值域B,且,据此求x的取值范围。例2和例1形式上正相反。二、求值问题例3.已知定义域为的函数f(x),同时满足下列条件:①;②,求f(3),f(9)的值。解:取,得因为,所以又取得评析:通过观察已知与未知的联系,巧妙地赋值,取,这样便把已知条件与欲求的f(3)沟通了起来。赋值法是解此类问题的常用技巧。三、值域问题例4.设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。解:令,得,即有或。若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有
本文标题:抽象函数-题型大全(例题-含答案)
链接地址:https://www.777doc.com/doc-1414327 .html