您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北师大版八年级数学上第一章勾股定理复习课件
1第一章勾股定理2ARCPQB一、勾股定理的发现勾股定理:直角三角形两直角边的平方和等于斜边的平方。一、知识要点3如果直角三角形两直角边分别为a,b,斜边为c,那么勾股定理a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方.4二、勾股定理的证明ccaabbccaabbbacCccaabb(一)(二)(三)5△ABC三边a,b,c为边向外作正方形,以三边为直径作半圆,若S1+S2=S3成立,则△ABC是直角三角形吗?ACabcS1S2S3ABCabcS1S2S3B6SSSCBA△ABC三边a,b,c,以三边为边长分别作等边三角形,若S1+S2=S3成立,则△ABC是直角三角形吗?ACabcS1S2S3B7•例1:在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=;(2)若c=34,a:b=8:15,则a=,b=;51630ABCabc8勾股逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形9如何判定一个三角形是直角三角形呢?(1)(2)有一个内角为直角的三角形是直角三角形两个内角互余的三角形是直角三角形符号语言:∴∠C=90°或△ABC为Rt△ABC∵a2+b2=c2(3)如果三角形的三边长为a、b、c满足a2+b2=c2,那么这个三角形是直角三角形CABabc101.已知三角形的三边长为9,12,15,则这个三角形的最大角是度;2.若△ABC中,AB=5,BC=12,AC=13,则AC边上的高长为;例290136011例:有四个三角形,分别满足下列条件:①一个内角等于另两个内角之和;②三个角之比为3:4:5;③三边长分别为7、24、25④三边之比为5:12:13其中直角三角形有()A、1个B、2个C、3个D、4个C12,,,,,,523,ABCABCabcCBAABCABC2222中,的对边分别是下列判断错误的是()A.如果则ABC是直角三角形B.如果c=b-a,则ABC是直角三角形,且C=90C.如果(c+a)(c-a)=b,则ABC是直角三角形D.如果::::则是直角三角3B13勾股数满足a2+b2=c2的三个正整数,称为勾股数14例3.请完成以下未完成的勾股数:(1)8、15、_______;(2)10、26、_____.(3)7、_____、2517242415例4.观察下列表格:……列举猜想3、4、532=4+55、12、1352=12+137、24、2572=24+25…………13、b、c132=b+c请你结合该表格及相关知识,求出b、c的值.即b=,c=________848516例5、如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD的面积┐DBAC34121317变式有一块田地的形状和尺寸如图所示,试求它的面积。121334∟ABCD518例6、假期中,王强和同学到某海岛上去玩探宝游戏,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,在折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米?AB82361MN19专题一分类思想1.直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。2.当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。202.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BCABC1.已知:直角三角形的三边长分别是3,4,X,则X2=25或71710821专题二方程思想直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。221.小东拿着一根长竹竿进一个宽为3米的城门,他先横拿着进不去,又竖起来拿,结果竹竿比城门高1米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长多少?x1m(x+1)323在一棵树的10米高处B有两只猴子,其中一只猴子爬下树走到离树20米的池塘A,另一只猴子爬到树顶D后直接跃向池塘的A处,如果两只猴子所经过距离相等,试问这棵树有多高?.DBCA24专题三折叠折叠和轴对称密不可分,利用折叠前后图形全等,找到对应边、对应角相等便可顺利解决折叠问题25例1、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.ACDBE第8题图Dx6x8-x46826练习:三角形ABC是等腰三角形AB=AC=13,BC=10,将AB向AC方向对折,再将CD折叠到CA边上,折痕CE,求三角形ACE的面积ABCDADCDCAD1E13512512-x5xx827例1:折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求1.CF2.EC.ABCDEF81010X8-X48-X6281.几何体的表面路径最短的问题,一般展开表面成平面。2.利用两点之间线段最短,及勾股定理求解。专题四展开思想29例1:如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是()A.20cmB.10cmC.14cmD.无法确定BB8OA2蛋糕ACB8周长的一半630例2如图:正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的顶点A沿正方体的表面到顶点C′处吃食物,那么它需要爬行的最短路程的长是多少?ABCD′A′B′C′D1631例3,如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是多少?2032AB20232323ABC∵AB2=AC2+BC2=625,∴AB=25.32例4:.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?1020BAC15533BAC1551020B5B51020ACEFE1020ACFAECB2015105341.几何体的内部路径最值的问题,一般画出几何体截面2.利用两点之间线段最短,及勾股定理求解。专题五截面中的勾股定理35小明家住在18层的高楼,一天,他与妈妈去买竹竿。买最长的吧!快点回家,好用它凉衣服。糟糕,太长了,放不进去。如果电梯的长、宽、高分别是1.5米、1.5米、2.2米,那么,能放入电梯内的竹竿的最大长度大约是多少米?你能估计出小明买的竹竿至少是多少米吗?361.5米1.5米2.2米1.5米1.5米xx2.2米ABCX2=1.52+1.52=4.5AB2=2.22+X2=9.34AB≈3米37练习:一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?381、通过这节课的学习活动你有哪些收获?2、对这节课的学习,你还有什么想法吗?39再见
本文标题:北师大版八年级数学上第一章勾股定理复习课件
链接地址:https://www.777doc.com/doc-1420122 .html