您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初一有理数所有知识点总结和常考题提高难题压轴题练习(含答案解析)
第1页(共23页)初一有理数所有知识点总结和常考题知识点1、正数和负数(1)、大于0的数叫做正数。(2)、在正数前面加上负号“-”的数叫做负数。(3)、数0既不是正数,也不是负数,0是正数与负数的分界。(4)、在同一个问题中,分别用正数与负数表示的量具有相反的意义。2、有理数(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2。不是有理数;(2)有理数的分类:①负分数负整数负有理数零正分数正整数正有理数有理数②负分数正分数分数负整数零正整数整数有理数(3)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0是非负数;a≤0a是负数或0a是非正数.3、数轴【重点】(1)、用一条直线上的点表示数,这条直线叫做数轴。它满足以下要求:①在直线上任取一个点表示数0,这个点叫做原点;②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…(2)、数轴的三要素:原点、正方向、单位长度。(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。数轴的规范画法:是条直线,数字在下,字母在上。注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。4、相反数(1)、只有符号不同的两个数叫做互为相反数。①注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;②非零数的相反数的商为-1;③相反数的绝对值相等。(2)、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。(3)、a和-a互为相反数。0的相反数是0,正数的相反数是负数,负数的相反数是正数。第2页(共23页)相反数是它本身的数只有0。(4)、在任意一个数前面添上“-”号,新的数就表示原数的相反数。(5)、若两个数a、b互为相反数,就可以得到a+b=0;反过来若a+b=0,则a、b互为相反数。(6)、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-“的个数为奇数,化简结果为负数。比如:-2×4×(-3)×(-1)×(-5),首先由4个负号,所以最终结果是正数,再算数字相乘得到1205、绝对值(1)、绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。(2)、正数的绝对值等于它本身;0的绝对值是0(或者说0的绝对值是它本身,或者说0的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对值的意义是数轴上表示某数的点离开原点的距离;)。0是绝对值最小的数。(3)、绝对值可表示为:)0()0(0)0(aaaaaa或)0()0(aaaaa;(4)、01aaa;01aaa;(5)、任何数的绝对值总是非负数(非负数是正数或0),即|a|≥0。(6)、互为相反数的两个数的绝对值相等。绝对值相等的两个数可能是互为相反数或者相等。(7)、有理数比大小:①正数比0大,0大于负数,正数大于负数;②两个负数比较,绝对值大的反而小;③数轴上的两个数,右边的数总比左边的数大;(8)、比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。1、有理数的加法(1)、有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;③一个数与0相加,仍得这个数.(2)、加法计算步骤:先定符号,再算绝对值。(3)、有理数加法的运算律:①加法的交换律:a+b=b+a;②加法的结合律:(a+b)+c=a+(b+c).(4)、为了计算简便,往往会采取以下方法:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。第3页(共23页)2、有理数的减法(1)、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).(有理数减法运算时注意两“变”:①减法变加法;②把减数变为它的相反数.)注:有理数的减法实质就是把减法变加法。3、有理数的乘法(1)、有理数乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数同零相乘都得零;(2)、一个数同1相乘,结果是原数;一个数同-1相乘,结果是原数的相反数。(3)、乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1====a、b互为倒数。(4)、几个不是偶的数相乘,积的符号由负因式的个数决定。负因数的个数是偶数时,积是正数;负因数的个数是奇数是,积是负数。(5)、有理数乘法的运算律:①乘法的交换律:ab=ba;②乘法的结合律:(ab)c=a(bc);③乘法的分配律:a(b+c)=ab+ac.4、有理数的除法(1)、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。(2)、有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。(3)、乘除混合运算的步骤:①先把除法转化为乘法;②确定积的符号;③运用乘法运算律和乘法法则进行计算得出结果。5、有理数的乘方(1)、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。(2)、an表示的意义是n个a相乘。如:2³=2×2×2=8(3)、分数的乘方,在书写时一定要把整个分数用小括号括起来。如:(1/2)²(4)、负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来。(5)、10的几次方,幂的结果中1后面就有几个0。如:105=100000(6)、负数的奇次幂是负数,负数的偶次幂是正数。显然,正数的任何次幂都是正数,0的任何正整数次幂都是0。1的任何次幂都是1。-1的奇数次幂是-1,-1的偶数次幂是1。6、科学记数法(1)、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,而且1≤︱a︱<10,n是正整数),使用的是科学计数法。(2)、用科学记数法表示一个n位整数,其中10的指数是n-1。例:240000000用科学计数法记为2.4×1087、近似数(1)、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数。(2)、精确度:近似数与准确数的接近程度可以用精确度表示。(3)、利用四舍五入法得到的近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。(4)、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字。第4页(共23页)(5)、解题技巧:①近似数精确到哪一位,只需看这个数的最末一位在原数的哪一位。②当四舍五入到十位或十位以上时,应先用科学记数法表示这个数,再按要求取近似数。(6)、a×10n中有效数字是指a的有效数字。7、等于本身的数汇总:①相反数等于本身的数:0②倒数等于本身的数:1,-1③绝对值等于本身的数:正数和0④平方等于本身的数:0,1⑤立方等于本身的数:0,1,-1.常考题:一.选择题(共12小题)1.的倒数是()A.﹣2B.2C.D.2.|﹣2|的相反数是()A.B.﹣2C.D.23.|﹣|的相反数是()A.B.﹣C.3D.﹣34.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kgB.0.6kgC.0.5kgD.0.4kg5.计算(﹣3)2的结果是()A.﹣6B.6C.﹣9D.96.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>07.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或28.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤09.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×10910.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是0第5页(共23页)11.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克12.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃二.填空题(共12小题)13.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.14.如图,是一个简单的数值运算程序,当输入x的值为﹣1时,则输出的数值为.15.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.16.绝对值小于5的所有的整数的和是.17.若x的相反数是3,|y|=5,则x+y的值为.18.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10﹣9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为米.19.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.20.图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,…,你是否发现苹果的排列规律?猜猜看,第六行有个苹果、第十行有个.(可用乘方形式表示)21.水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第二次变化后的位置,其变化值是.22.观察两行数根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果).第6页(共23页)23.若实数a,b满足,则=.24.如图,数轴上的两个点A,B所表示的数分别是a,b,在a+b,a﹣b,ab,|a|﹣|b|中,是正数的有个.三.解答题(共16小题)25.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.26.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)﹣3﹣2﹣1.5012.5筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)27.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?28.计算:1﹣2+2×(﹣3)2.29.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(
本文标题:初一有理数所有知识点总结和常考题提高难题压轴题练习(含答案解析)
链接地址:https://www.777doc.com/doc-1424472 .html