您好,欢迎访问三七文档
23.2中心对称观察下面的图形,你有什么发现?观察下面的两个图形你有什么发现?ABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’O(1)把其中一个图案绕点O旋转180°,你有什么发现?观察(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你有什么发现?OCB(2)重合重合概念把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,也称这两个图形成中心对称ABCA’C’B’O这个点叫作对称中心2个图形中的对应点叫做对称点并且由图知OA=OA`,同理有OB=OB`,OC=OC`。由此得到下面结论:定理2关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。△ABC与△A`B`C`关于点O成中心对称,点A、A`,B、B`,C、C`都分别和对称中心O在一条直线上.两个图形关于中心对称,是指两个图形之间的形状、位置关系。从定义可知,关于中心对称的两个图形必须能够重合,所以这两个图形一定全等。所以有:定理1关于中心对称的两个图形是全等形。ABCC`B`A`O∵△ABC与△A`B`C`关于点O成中心对称∴△ABC≌△A`B`C`∵△ABC与△A`B`C`关于点O成中心对称∴AA`、BB`、CC`经过点O且OA=OA`,OB=OB`,OC=OC`重合(看图)∥∥∥∥∥∥(再看图)(先看图)(2)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.(1)关于中心对称的两个图形是全等形;归纳性质C'B'A'OABCAA′B′BO2、线段的中心对称线段的作法AOA′1、点的中心对称点的作法灵活运用,体会内涵以点O为对称中心,作出点A的对称点A′;以点O为对称中心,作出线段AB的对称线段点A′B′点A′即为所求的点例1(2)如图23.2-5,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.解:A′C′B′△A′B′C′即为所求的三角形。3.已知四边形ABCD和点O,画四边形A’B’C’D’,使它与已知四边形关于点O对称。..画法:1.连结AO并延长到A’,使OA’=OA,得到点A的对称点A’.2.同样画B、C、D的对称点B’、C’、D’.3.顺次连结A’、B’、C’、D’各点.四边形A’B’C’D’就是所求的四边形.A’B’D’C’.DCBAoABCDO∴四边形A`B`C`D是所求的四边形。A`.D`.C`.B`.若点O是BC的中点呢?∴四边形A`B`C`D`就是所求的四边形。A`D`.C`.B`.若点O与点A重合呢?由已知条件,如果把其中一个图形绕着这个点旋转180°,它必须与另一个图形重合,根据中心对称的定义,可知这两个图形关于这一点对称。逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。定理2关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。问题:(1)①定理2的题设是什么?②结论是什么?②(对称点的连线都经过对称中心,并且被对称中心平分)③它的逆命题是什么?③(如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。)(2)我们如何证明这个逆命题是正确的?定理2的逆命题为:①(两个图形成中心对称)现在我们来研究定理2的逆命题,先看定理2。命题的已知条件(看图)命题的结论是两个图形关于这点对称(看图)∥∥∥∥‖‖∥∥∥∥∥∥∥∥‖‖‖‖180°重合如图,已知△ABC与△A’B’C’中心对称,求出它们的对称中心O。ABCA’B’C’解法一:根据观察,B、B’应是对应点,连结BB’,用刻度尺找出BB’的中点O,则点O即为所求(如图)ABCA’B’C’OO解法二:根据观察,B、B’及C、C’应是两组对应点,连结BB’、CC’,BB’、CC’相交于点O,则点O即为所求(如图)。ABCA’B’C’轴对称与中心对称定义、性质对比图:轴对称中心对称定义123有一条对称轴—直线图形沿轴对折,(翻转达180度。)翻转后与另一个图形重合。有一个对称中心—点。图形绕中心旋转180度。旋转后与另一个图形重合。性质12两个图形是全等形。对称轴是对称点连线的垂直平分线。两个图形是全等形。对称点连线都过对称中心,且被对称中心平分。轴对称中心对称1有一条对称轴——直线有一个对称中心——点2图形沿轴对折(翻转180°)图形绕中心旋转180°3翻转后和另一个图形重合旋转后和另一个图形重合ABCC1A1B1O1、如图,网格中有一个四边形和两个三角形。(1)请你画出三个图形关于点O的中心对称图形;巩固O(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数.试问这个整体图形至少旋转多少度才能与自身重合?巩固O巩固2、如图,A点坐标为(3,3)将△ABC先向下移动4个单位得△A’B’C’,再将△A’B’C’绕点O逆时针旋转180°得△A’’B’’C’’,请你画出△A’B’C’和△A’’B’’C’’,并写出点A’’的坐标.例1、如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°后得到△EFC。(1)试猜想AF与BE有何关系?说明你的理由;范例CABFE(2)若△ABC的面积为3cm3,求四边形ABEF的面积;范例CABFE(3)当∠ACB为多少度时,四边形ABEF为矩形?试说明你的理由。范例CABFE1、如图,直线l1、l2和△ABC,l1⊥l2,点A在l1上,点B、C在l2上。(1)画△A1B1C1,使△A1B1C1与△ABC关于点O对称;巩固l1l2CABO1、如图,直线l1、l2和△ABC,l1⊥l2,点A在l1上,点B、C在l2上。(2)连接AB1、AC1、A1B、A1C,四边形AC1A1C和四边形AB1A1B各是什么四边形?并说明你的理由?巩固l1l2CABO本节课你有哪些收获与疑问?归纳:(1)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.(2)关于中心对称的两个图形是全等形。作业布置:课堂作业:P66练习题1、2(写在书上)P69习题23.21、6(写在书上)再见!
本文标题:中心对称课件(1)
链接地址:https://www.777doc.com/doc-1670077 .html