您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 判定平行四边形的五种方法
1判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。下面以近几年的中考题为例说明如何证明四边形是平行四边形。一、两组对边分别平行如图1,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由。解:(1)选证△BDE≌△FEC证明:∵△ABC是等边三角形,∴BC=AC,∠ACD=60°∵CD=CE,∴BD=AE,△EDC是等边三角形∴DE=EC,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE,∴BD=FE,∴△BDE≌△FEC(2)四边形ABDF是平行四边形理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形∵∠CDE=∠ABC=∠EFA=60°∴AB∥DF,BD∥AF∵四边形ABDF是平行四边形。点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。二、一组对边平行且相等例2已知:如图2,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连结BG并延长交DE于F(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形?并说明理由。分析:(2)由于ABCD是正方形,所以有AB∥DC,又通过旋转CE=AE′已知CE=CG,所以E′A=CG,AFBDCE图12这样就有BE′=GD,可证E′BGD是平行四边形。解:(1)∵ABCD是正方形,∴∠BCD=∠DCE=90°又∵CG=CE,△BCG≌△DCE(2)∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′,∵CE=CG,∴CG=AE′,∵四边形ABCD是正方形∴BE′∥DG,AB=CD∴AB-AE′=CD-CG,即BE′=DG∴四边形DE′BG是平行四边形点评:当四边形一组对边平行时,再证这组对边相等,即可得这个四边形是平行四边形三、两组对边分别相等例3如图3所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE,等边△BCF。求证:四边形DAEF是平行四边形;分析:利用证三角形全等可得四边形DAEF的两组对边分别相等,从而四边形DAEF是平行四边形。解:∵△ABD和△FBC都是等边三角形∴∠DBF+∠FBA=∠ABC+∠FBA=60°∴∠DBF=∠ABC又∵BD=BA,BF=BC∴△ABC≌△DBF∴AC=DF=AE同理△ABC≌△EFC∴AB=EF=AD∴四边形ADFE是平行四边形点评:题设中存在较多线段相等关系时,可证四边形的两组对边分别相等,从而可证四边形是平行四边形。四、对角线互相平分例4已知:如图4,平行四边形ABCD的对角线AC和BD相交于O,AE⊥BD于E,BF⊥AC于F,CG⊥BD于G,DH⊥AC于H,求证:四边形EFGH是平行四边形。3图4分析:因为题设条件是从四个顶点向对角线引垂线,这些条件与四边形EFGH的对角线有关,若能证出OE=OG,OF=OH,则问题可获得解决。证明:∵AE⊥BD,CG⊥BD,∴∠AEO=∠CGO,∵∠AOE=∠COG,OA=OC∴△AOE≌△COG,∴OE=OG同理△BOF≌△DOH∴OF=OH∴四边形EFGH是平行四边形点评:当已知条件与四边形两对角线有关时,可证两对角线互相平分,从而证四边形是平行四边形。五、两组对角相等例5将两块全等的含30°角的三角尺如图1摆放在一起四边形ABCD是平行四边形吗?理由。(1)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:。分析:因为题设与四边形内角有关,故考虑四边形的两组内角相等解决问题。解:(1)四边形ABCD是平行四边形,理由如下:∠ABC=∠ABD+∠DBC=30°+90°=120°,∠ADC=∠ADB+∠CDB=90°+30°=120°又∠A=60°,∠C=60°,∴∠ABC=∠ADC,∠A=∠C(2)四边形ABC1D1是平行四边形,理由如下:4将Rt△BCD沿射线方向平移到Rt△B1C1D1的位置时,有Rt△C1BB1≌Rt△ADD1∴∠C1BB1=∠AD1D,∠BC1B1=∠DAD1∴有∠C1BA=∠ABD+∠C1BB1=∠C1D1B1+∠AD1B=∠AD1C1,∠BC1D1=∠BC1B1+∠B1C1D1=∠D1AD+∠DAB=∠D1AB所以四边形ABC1D1是平行四边形点评:(2)也可这样证明:由(1)知ABCD是平行四边形,∴AB∥CD,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置时,始终有AB∥C1D1,故ABC1D1是平行四边形。==
本文标题:判定平行四边形的五种方法
链接地址:https://www.777doc.com/doc-1864904 .html