您好,欢迎访问三七文档
飞机的稳定性一、飞机的纵向稳定性二、飞机的横向稳定性三、飞机的方向稳定性四、飞机的横侧稳定性及其飘摆五、影响飞机稳定性的因素班级:电子D班姓名:吴凌翔学号:091143428一、飞机的纵向稳定性(一)飞机的迎角稳定性——迎角恢复力矩的产生(二)俯仰阻转力矩的产生(三)速度稳定性(四)飞行M数和飞行高度对飞机纵向稳定性的影响(一)飞机的迎角稳定性——迎角恢复力矩的产生影响飞机的稳定性因素有很多,几乎每一个大部件如机翼、机身、尾翼都有影响,这里我们只介绍那些主要的因素。影响飞机纵向稳定性的主要因素是飞机的水平尾翼和飞机的重心、焦点位置。在设计飞机时,首先要妥善安排重心的位置,使它能保证飞机的纵向稳定。水平尾翼对飞机纵向稳定性也很重要。如图3—4—19所示,飞机先以一定的迎角作稳定的飞行,倘若一阵风从下吹向机头使飞机迎角增大,飞机抬头、阵风跟着就消失。由于惯性的作用,飞机仍要沿原来的方向前行一段路。这时水平尾翼的迎角也跟着增大。于是,水平尾翼产生向上的附加升力,对飞机重心形成附加的下俯的恢复力矩,使飞机有自动恢复原来迎角的趋势。同理,当飞机受扰动而减小迎角时产生向下的附加升力,对重心形成上仰恢复力矩,也使飞机具有自动恢复原来迎角的趋势。尾Y图3—4—19水平尾翼产生俯仰恢复力矩的情形(二)俯仰阻转力矩的产生飞机俯仰阻转力矩主要是由水平尾翼产生的。如图3—4—20所示,当机头向上转动时,水平尾翼向下运动,这时,流向水平尾翼的实际气流速度等于水平尾翼迎面气流速度C和水平尾翼向下运动所引起向上的相对气流速度的合速度。因此,水平尾翼迎角增大,于是,在水平尾翼上产生正的附加力,对飞机重心形成阻转力矩,阻止机头向上摆动。同理,当机头向下摆动时,水平尾翼向上运动,在水平尾翼上产生负的附加升力对飞机重心形成阻转力矩,阻止机头向下摆动。飞机俯仰恢复力矩,使机头上下摆动,在摆动的过程中形成俯仰阻转力矩;迫使飞机的上下摆动逐渐减弱乃至消失。实际上,当飞机受扰动以致迎角变化时,不仅水平尾翼迎角随之变化产生附加升力,而且机身,机翼等部分的迎角也要发生变化,同样产生附加升力(见图3—4—21),研究飞机有没有迎角稳定性,就要综合起来看飞机各部分的附加升力的总和,即飞机附加升力的作用点(飞机焦点)是在飞机重心之后还是在飞机重心之前而定。尾CC尾Y飞机Y飞机焦点位于飞机重心之后,飞机具有迎角稳定性,因为当飞机受扰动而迎角增大时,飞机附加升力对飞机重心形成下俯的恢复力矩,使飞机具有自动恢复原来迎角的趋势(图3—4—22a)。而当飞机受到扰动而迎角减小时,飞机附加升力对飞机重心形成上仰的恢复力矩,也使飞机具有恢复原来迎角的趋势(图3—4—22b)。如果飞机焦点位于飞机重心之前,飞机就没有迎角稳定性,到了当飞机受扰动迎角增大时,飞机附加升力对飞机重心形成上仰的力矩,迫使迎角更加增大。而当飞机受扰动而迎角减小时,飞机附加升力对重心形成下俯的力矩,迫使迎角更加减小。如果飞机焦点位置与重心位置重合,则当飞机受扰动以致迎角发生变化时,其附加升力正好作用于飞机重心上,对重心形成的力矩等于零。飞机既不自动恢复原来迎角,也不更加偏离原来迎角。这时处于中和稳定情况。飞机Y(三)速度稳定性在直线飞行中,当飞机受微小扰动以致速度发生变化时,在扰动消失后,如何趋向于恢复原来速度,飞机即具有速度稳定性。反之,飞机就没有速度稳定性。例如:飞机原来处于纵向平衡状态,当受扰动而使飞行速度增大时,由于具有迎角稳定性,竭力保持原来迎角不变,所以,飞行速度增大会使升力增大,而引起飞机运动轨迹向上弯曲,以至飞机转入上升,飞机重力平行于飞行方向的分力将起阻力作用,力图恢复飞机原来的飞行速度。反之,飞机受扰动以致飞行速度减小时,会引起升力降低,运动轨迹向下弯曲,飞机仍力图恢复原有的飞行速度。飞机具有速度稳定性的条件是:飞行速度增大时,升力增加,飞行速度减小时,升力降低。一般说来,在亚音速范围内飞行,只要飞机具有迎角稳定性,飞机也就具有速度稳定性。在跨音速范围内飞行,由于空气压缩性的影响,飞机有可能丧失速度稳定性。1、飞行M数对飞机纵向稳定性的影响。图3—4—23表示歼—6飞机焦点位置随飞行M数的变化情况,从图中可以看出,飞行M数在0.9以前,飞机焦点位置比较靠前,飞行M数超过0.9以后,随着M数的增大,飞机焦点位置显著后移,纵向稳定性大大增强,当M数超过1.02以后,飞机焦点位置又稍向前移,但同M数小于0.9的情况相比,焦点位置仍然比较靠后,纵向稳定性还是相当强的。飞机焦点位置变化的原因为:低速飞行中,当飞机受到扰动使迎角增大时,机翼上表面吸力增大的地方,主要位于机翼前段,所以飞机焦点位置比较靠前,但在大M数飞行中,迎角增大后,同迎角未增大前的气流情况比较起来,机翼上表面的气流速度更加加快,吸力更为增大。吸力增大地方主要位于局部激波前的局部超音速区内,也就是机翼的中、后段,所以飞机焦点位置比较靠后,随着飞行M数的增大,机翼表面的局部超音速区不断向后扩展,所以飞机焦点位置也随之后移。(四)飞行M数和飞行高度对飞机纵向稳定性的影响飞行M数超过1.02以后,飞机焦点稍向前移,可以这样解释:如图3—4—24,后掠机翼的刚性轴同翼根切面夹有一定的后掠角,机翼升力通常作用在刚性轴的后面,它除了迫使机翼向上弯曲外,还迫使机翼前缘向下扭转,减小迎角,离翼根越远的翼切面,扭转角越大,迎角减小也越多,于是,在飞机受扰动而增大迎角时,翼根部分的迎角比翼尖部分的迎角增加得多一些,其附加升力也就大一些。由于歼—6飞机采用大后掠角机翼,翼根部分的附加升力大,相当于机翼前部的附加升力大。这样,整个机翼附加升力的作用点前移,因而导致飞机焦点稍向前移。2、飞行高度对飞机纵向稳定性的影响。高度升高,空气密度减小,如果保持表速不变,真速要增大,真速增大,飞机俯仰转动时,水平尾翼迎角变化量减小(见图3—4—25),因此,阻转力矩减小,如果保持真速不变,动压就要减小,阻转力矩也要减小,所以,随着高度增加,飞机受到扰动后,飞机恢复到平衡位置比较缓慢。但由于飞机具有俯仰恢复力矩。只要飞行员稳住杆,俯仰摆动仍会自动消失。如果飞行员在这种情况下进行修正,则会使摆幅越修越大,这是因为摆动周期短,修正时期不易掌握。例如飞行员在发现机头上仰时,以向前顶杆来修正,由于摆动周期短,当向前顶杆时,飞机已开始下俯,所以要增加其下俯趋势,反之亦然。这就是高空飞行时,飞机容易产生俯仰飘摆(也叫做纵向飘摆)的道理。二、飞机的横向稳定性(一)横向恢复力矩的产生(二)横向阻转力矩的产生(一)横向恢复力矩的产生保证飞机横向稳定性的主要因素是机翼的后掠角和上反角。也就是说,迫使飞机自动恢复原来横向平衡状态的恢复力矩主要是机翼的上反角和后掠角的作用所产生的。例如平飞中,飞机受扰动而带微小左坡度时,升力Y和飞机重力G的合力F起着向心力的作用,使飞机向左侧方向作曲线运动(图3—4—26A),而出现左侧滑。此时,因上反角的作用左翼迎角增大(图3—4—26B)升力也增大,而右翼则相反,迎角和升力都减小。左右机翼升力之差,形成横向恢复力矩,力图消除坡度和向心力,进而消除侧滑。而使飞机具有自动恢复横向平衡状态的趋势。机翼后掠角也使飞机具有横向稳定性。其道理可以这样解释:当飞机出现侧滑时,如(图3—4—27)所示的左侧滑,由于后掠角的作用,左机翼的垂直分速比右翼大,左翼的升力也就比右翼大。于是,两边机翼升力之差,对重心形成滚转力矩,即横向恢复力矩,力图减小左坡度,进而消除左侧滑,使飞机具有横向稳定性。(二)横向阻转力矩的产生横向阻转力矩主要是由机翼产生的,譬如飞机向左滚转(图3—4—28),左翼下沉,出现向上的相对气流速度,引起迎角变大,产生正的附加升力。右翼上扬,出现了向下的相对气流速度,引起迎角变小,产生负的附加升力,于是,左右机翼出现升力差,对纵轴形成阻转力矩,阻止飞机向左滚转。同理,飞机向右滚转时,也要产生阻止飞机向右滚转的阻转力矩。C左YC右Y三、飞机的方向稳定性(一)方向恢复力矩的产生(二)方向阻转力矩的产生(一)方向恢复力矩的产生对飞机方向稳定性影响最大的是垂直尾翼,另外,飞机机身的侧面迎风面积也起相当大的作用,其它如机翼的后掠角,发动机短舱也有一定的影响。图3—4—29表明了垂直尾翼产生方向稳定力矩的情况。例如直线飞行中,飞机受微小扰动,使机头向右偏转。扰动消除后,由于惯性,飞机仍然保持原来的方向,向前飞一段路,即出现右侧滑,相对气流从左前方吹来,作用在垂直尾翼上,产生向右的附加侧力,对立轴形成方向恢复力矩,力图使机头左偏,消除侧滑。迫使飞机趋向于恢复方向平衡状态。即是说,使飞机具有方向稳定性。此外,对于机翼具有后掠角的飞机来说,在左侧滑中,左翼的气流垂直分速比右翼大(参看图3—4—27),左翼的阻力也就比右翼大。两机翼的阻力之差,形成左偏的恢复力矩,使飞机也具有方向稳定性。尾Z(二)方向阻转力矩的产生方向阻转力矩也主要是由垂直尾翼产生的,例如,机头右偏时,垂直尾翼向左运动,在垂直尾翼范围内,产生向右的相对气流速度,引起垂直尾翼侧滑角增大。因此,在垂直尾翼上产生向右的附加侧力,如图3—4—30中的,对飞机重心形成阻转力矩,阻止机头向左偏转时,也要产生阻止机头左偏的阻转力矩。综上所述,横向恢复力矩和方向恢复力矩都是在飞机有侧滑这个条件,通过机翼上反角、机翼后掠角和垂直尾翼等作用而产生的。方向恢复力矩总是力图消除侧滑。而横向恢复力矩是力图使飞机向侧滑的反方向滚动。恢复力矩与阻转力矩是有本质的区别的:恢复力矩是当飞机偏离平衡位置后,产生了附加气动力引起的,它的大小直接取决于偏离平衡位置的程度与旋转无关,而阻转力矩却是在旋转过程中产生的,它直接取决于转动角速度的大小,一旦转动停止,阻转力矩也就消失。)(C尾Z图3-4-30方向阻转力矩的产生四、飞机的横侧稳定性及其飘摆飞机的横向稳定性和方向稳定性是紧密联系并互为影响的,因此两者合起来,叫做飞机的横侧稳定性。飞机滚转时要产生偏航力矩;在偏航时要产生横向力矩,因此二者必须适当地配合,过分稳定和过分不稳定都对飞行不利,同时两者配合得不好,方向稳定远远超过横向稳定,或者相反,都会使得横侧稳定性不好,甚至陷入不利的飞行状态,例如侧向飘摆。飞机受扰动作用而向某一侧倾斜和侧滑,由于飞机横向和方向稳定性配合不当,在自动恢复飞机平衡状态的过程中,将产生向另一侧的倾斜和侧滑,如此反复,这种现象称为侧向飘摆。当飞机受扰动作用而向右倾斜时,在升力和重力的合力的作用下,势必同时产生右侧滑,在存在右侧滑的条件下,由于机翼后掠角(或上反角)的作用,右翼升力增大,左翼升力减小,两边机翼的升力差对重心形成横向恢复力矩迫使飞机减小坡度以恢复横向平衡。又由于垂直尾翼的作用,形成方向恢复力矩,迫使飞机减小侧滑角以恢复方向平衡。在这个恢复的过程中,如果飞机的横向稳定性过强而方向稳定性过弱,使坡度迅速消除而侧滑消除很慢,在飞机恢复横向平衡时仍将存在较大的右侧滑,由于右侧滑的存在,右机翼升力仍大于左机翼升力;飞机便会产生左坡度,从而进入向左倾斜和左侧滑,如此来回左右倾斜和左右侧滑,就产生了飞机侧向飘摆。采用大后掠角或三角形机翼的飞机,往往造成横向稳定性过强,为了解决这个矛盾,避免飞机产生侧向飘移,一般飞机采用下反角机翼来减弱横向稳定性,有的还在机身下部安装垂直安定片(又称方向安定片)来增强方向稳定性,如歼六飞机就是这样(图3—4—31、32)。机翼下反的作用,可参看图3—4—32。由于下反角的存在,当飞机向右偏斜并产生右侧滑和高度下降时,气流从飞机右下前方吹来,将使右翼的迎角减小,升力减小,左翼的迎角增大,升力增大,产生不稳定的横向力矩,这样就可以减弱或抵消一部分飞机由于采用大后掠机翼而带来的过强的横向稳定性。五、影响飞机稳定性的因素(一)飞机重心位置前、后变动对飞机稳定性的影响(二)速度变化对飞机稳定性的影响(三)高度变化对飞机稳定性的影响(四)大迎角飞行对飞机稳定性的影响(五)飞行员松开杆舵对飞机稳定性的影响(六)操纵系统中的配重,弹簧对飞机稳定性的
本文标题:飞机稳定性.
链接地址:https://www.777doc.com/doc-1965019 .html