您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 交通运输 > 运筹学4-6库存管理线性规划运输问题
第四章库存管理复习建议本章在历年考试中,处于相当重要的地位,建议学员全面掌握,重点复习。从题型来讲包括单项选择题、填空题、名词解释和计算题题型都要加以练习。重要考点:库存管理的作用和意义;存货台套法和ABC分类管理;经济订货量的计算;订货时间的确定等。4.1库存管理的作用和意义一、库存管理的作用库存管理的最基本的一个方面就是保证工业企业的生产能够正常的、连续的、均衡的进行。分以下几种:(1)适应原材料的季节性(2)适应产品销售的季节性(3)适应运输上的合理性和经济性(4)适应生产上的合理安排(5)适应批发量的大小二、库存管理的意义1、保证企业按科学的计划实现均衡生产,不要因缺少原材料或其它物资而停工停产。2、使库存总费用达到最低。4.2库存管理的存货台套法与ABC分类管理一、存货台套法的内容以存货台套作为存货管理的单位,在某个存货台套中可以包括有关的各种单项存货。它简化了工作的内容,并可保证供应的成套性。二、ABC分类管理★按各种存货的价值和数量不同,将它们分成A、B、C三类。A类:数量10%,价值70%,特殊物品如防火设备、易燃易爆物品、剧毒及辐射性物品等,对该类物品应细致的加强管理。B类:数量30%,价值20%。C类:数量60%,价值10%。对B和C类在管理上可以适当粗略一些,只要不缺货,不影响正常生产即可。4.3库存费用分析和平均库存的概念一、库存费用分析★1、原材料库存费用模型库存费用=订货费+保管费其中:订货费=(年需要量/订货量)*一次订货费保管费=平均库存量*单位物资保管费=平均库存额*保管费率2、半成品和成品库存费用模型库存费用=工装调整费+保管费其中:工装调整费=(年计划产量/生产批量)*一次工装调整费保管费=平均库存量*单位物资保管费=平均库存额*保管费率4.4经济订货量的计算方法经济订货量(EOQ)★:是使总的存货费用达到最低的为某个台套或某个存货单元确定的最佳的订货批量。主要方法:1、表格计算法。(了解)2、图解法。(了解)3、数学方法:由库存费用=订货费+保管费=(年需要量/订货量)*一次订货费+平均库存量*单位物资保管费可推导出当订货费=保管费时库存总费用达到最低,带入已知数据可计算出经济订货量。其中平均库存量=订货批量的一半,平均库存额=平均库存量*单价。【例题·计算题】某工厂需要某种零件,每年需要量为1200个,每次订货的订货费用为300元,每个零件保管费为2元,求每次的最佳订货批量。【答案】设最佳订货批量为X个/次则当保管费=订货费时,库存费用最低即1120023002XXX=600个/次所以每次的最佳批量为600个.【解析】由库存费用=订货费+保管费=(年需要量/订货量)*一次订货费+平均库存量*单位物资保管费可推导出当订货费=保管费时库存总费用达到最低,带入已知数据可计算出经济订货量。4.5订货时间的确定1、再订货点:有两种含义,一种是时间上的含义,即什么时间再订货;另一种为存货水平上的含义。2、前置时间:是提前时间的同义词,亦可称为订货提前期。3、前置时间内的需求量:前置时间内的使用量就是需求量。4、缺货:指仓库中已没有某项存货可以满足生产需求或销售需求时的状况。缩短前置时间容易引起缺货。5、安全库存量:为了预防可能出现的缺货现象而保持的额外库存量。4.6正确估价供应商所提供的数量折扣一、大批采购的优缺点1、大批采购的优点(1)可以按较低的单位价格采购(2)减少订货次数,降低订货费用(3)大批采购,也可大批量运输,可获得运价优惠(4)进货批量大,缺货可能性就减少。2、大批量采购的缺点(1)大批量进货,保管费用较高(2)占用更多的资金(3)库存货物会变的陈旧、过时。(4)库存货物的更换率低(5)适应时尚的灵活性较低(6)损耗增大,贬值的可能性也会增大。二、正确评价供应者提供的数量折扣★经济订货量是使我们库存费用最低的订货批量,但供应商往往提出如果提高一次订货量,那么会在产品价格方面做出优惠,此时库存费用会增加,我们需要比较才能确定出哪种方案更合适。【例题·计算题】某企业年需采购轴承200台套,每台套500元,每次的订货费用为250元,保管费用率为12.5%,供应商提出,若每次订货100台套,则轴承的进厂价可降为490元/台套。试问能否接受这种优惠,每次订货100台套?(2008.7真题)【答案】设经济订货量为X台套/次则120050012.5%2502XXX=40台/次此时库存费用为2500元成本为200500=100000元总费用为102500元优惠后库存费用为120010049012.5%2503562.52100总成本为200490=98000总费用为3562.5+98000=101562.5所以接受这种优惠【解析】分别计算不同方案下的总费用,选择费用较少的方案。本章总结:本章各种题型都要涉及,选择、填空和名词解释主要从基本概念和性质中出题,计算题考点有两个(实质上是一个):1、经济订货量的计算(包含数量、次数和时间的计算);2、是否接受数量折扣。第五章线性规划复习建议本章在历年考试中,处于相当重要的地位,建议学员全面掌握,重点复习。从题型来讲包括单项选择题、填空题、名词解释和计算题题型都要加以练习。重要考点:线性规划的模型结构;线性规划的图解法和线性规划的单纯形法等。5.1概述1、规划的目的:在现有人力、物力和财力等资源条件下,如何合理地加以利用和调配使我们在实现预期目标的过程中,耗费资源最少,获得受益最大。2、线性规划的基本特点:基本特点是模型中的线性函数。3、线性规划:“线性”是用来描述两个或多个变量之间的关系是直接成正比例的;“规划”是指使用某种数学方法使有限资源的运用达到最优化。线性规划是一种合理利用资源、合理调配资源的应用数学方法。5.2线性规划的模型结构一、线性规划的模型结构1、变量:根据需求自己设出变量;2、目标函数:把想要实现的目标公式化;3、约束条件:实现目标的限制因素;4、变量非负:变量的取值应大于等于0。二、线性规划建模的步骤1、明确问题,确定目标,列出约束因素。2、收集资料,确立模型。3、模型求解与检验。4、优化后分析。其中较为困难的是建立模型;建模的关键是提出问题,明确问题,确定目标;花时间、精力最大的是收集资料和数据。5.3线性规划的图解法图解法又称为几何解法,适用于2—3个变量的线性规划问题,再多就画不出图来了。1、可行解:满足约束条件的解。2、可行解区:全部可行解所分布的区域。3、等值线:过过可行解区的凸交点并平行于目标函数的直线,分为等成本线和等利润线。【例题·计算题】用图解法解线性规划问题:maxF=2X1+4X2s.t.4X1+5X2≤402≤X1≤102≤X2≤8【答案】如图所示如图所示,当X1=2,X2=6.4时,取得最大值为29.6。【解析】图中阴影部分为可行解区,若有最优解,则最优解在可行解区的凸交点上,过交点画平行于目标函数的等值线(这里为等利润线,图中虚线),原点距离等利润线越远,说明利润越大,所以最远那条等利润线经过的那个交点即为最2x2x11028(2,6.4)(7.5,2)(2,2)优解。5.4线性规划问题的单纯形法一、单纯形法的一般步骤★1、引入剩余变量或松弛变量,把约束方程中的不等式变为等式,新变量在目标函数中系数为零;2、观察有无基变量,若有则本步省略,如无则引入人工虚拟变量,凑出基变量,人工变量在目标函数中系数为M,是个极大的正数;3、列出单纯形表进行迭代:(1)判定是否最优:表中最后一行为判别指数行,求最大值时,数值都小于等于0时最优,最小值时相反;若最优则停止,不是最优继续下一步;(2)确定入基变量和出基变量:最后一行数值正数中最大的(或负数中最小的)所对应的列变量做为最大值问题(或最小值问题)的入基变量;最后一列数值与入基变量多对应系数比值最小的数值对应的行变量做为出基变量;(3)迭代:入基变量取代出基变量进行系数转换。(4)重复(1)、(2)、(3)过程直至最优。二、几个概念★1、设约束方程的个数为m,变量的个数为n,mn时,可把变量分为基变量和非基变量两部分,基变量个数=方程个数=m,非基变量个数=n-m。2、所有的非基变量都等于0时求出的特解我们称为基解或基础解,基解非负要求时叫做非负基解,也叫可行基解。3、一个线性规划问题若有最优解,那么此最优解必定是某个基变量组的可行基解,由于每个基变量组的基解,不一定是可行的,即使是可行的,也不一定是最优的,所以求最优解的任务就在于:在许多可行基解中,找到最优的可行基解。三、应用示例【例题·计算题】用单纯形法求解目标函数:MaxZ=2X1+X2约束条件:X210;2X1+5X260;X1+X218;3X1+X244;X1,X20。答案:引入松弛变量X3,X4,X5,X6把不等式变为等式。X2+X3=10;2X1+5X2+X4=60;X1+X2+X5=18;3X1+X2+X6=44;X1,X2,X3,X4,X5,X60初始单纯形表为:Cj210000Z基变量X1X2X3X4X5X6常数0X3011000100X4250100600X5110010180X631000144Zj0000000Cj-Zj210000Z进行迭代求解第一次迭代:Cj210000Z基变量X1X2X3X4X5X6常数0X3011000100X4013/2010-2/392/30X502/3001-1/310/32X111/30001/344/3Zj22/30002/388/3Cj-Zj01/3000-2/3Z-88/3第二次迭代:Cj210000Z基变量X1X2X3X4X5X6常数0X30010-1.50.550X40001-6.51.591X201001.5-0.552X11000-0.50.513Zj21000.50.531Cj-Zj0000-0.5-0.5Z-31所以最优解为X1=13,X2=5,X3=5,X4=9,X5=X6=0时,MaxZ=31。【解析】该问题为一个完整的单纯形法求解过程,考试过程中从中间挑出一部分作为考试题目.本章总结:本章内容选择、填空和名词解释都会涉及,计算题考察主要有三个知识点:1、根据材料建立模型(不需求解);2、利用图解法求解;3、单纯形法求解。本章计算题经常会考其中2个,分值比较大,需特殊注意。第六章运输问题复习建议本章在历年考试中,处于相当重要的地位,建议学员全面掌握,重点复习。从题型来讲包括单项选择题、填空题、名词解释和计算题题型都要加以练习。重要考点:西北角法;闭合回路法和修正分配法等。6.1运输问题及其特殊结构一、运输问题产销平衡表销地产地B1B2…..Bn产量A1X11X12X1na1…..…..AmXm1Xm2Xmnan销量b1b2…bn每一格中的具体运输数量我们不确定,我们可以设为Xij,代表从第i个产地运往第j个销售地点的运输数量,对于不同的运输数量,会产生不同的总运费,我们的目地就是找出所有满足要求限制的可能的运输数量的分配方案,然后从这些运输方案中选择最优的即总运费最低的方案。运输问题的解:使得总运费最低的具体运输数量。单位运价表销地产地B1B2…..BnA1C11C12C1n…..AmCm1Cm2Cmn单位运价表中每一个数据代表从不同产地运输一单位产品到不同销售地点所产生的运费,我们用Cij表示。产销平衡表和单位运价表是一一对应的,我们可以把这两个表合为一个表称为平衡表。二、表上作业法该方法分为下面三个步骤:1、找到一个初始方案2、根据判定标准判断是否最优3、若不是最优,对该案进行改进,然后重复第2、3步直到求出最优解来为止。6.2供需平衡的运输问题运输问题存在供需平衡、供大于需和供小于需三种情况其模型结构是不同的。我们先来看供需平衡问题,下面举例予以说明:某一运输问题的产销平衡表和单位运价表如下图所示平衡表B1B2B3产量A110203050A230204060销量205040110该表是产销平衡表和单位运价表合起来的,每一格中右上角小格对应的是单位运费。1、求的一个初始的
本文标题:运筹学4-6库存管理线性规划运输问题
链接地址:https://www.777doc.com/doc-1999696 .html