您好,欢迎访问三七文档
传感器原理及检测技术2016-10-08原野oioa2...转自百眼通修改微信分享:传感器技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学和材料科学等众多学科相互交叉的综合性和高新技术密集型前沿技术之一,是现代新技术革命和信息社会的重要基础,是自动检测和自动控制技术不可缺少的重要组成部分。目前,传感器技术已成为我国国民经济不可或缺的支柱产业的一部分。传感器在工业部门的应用普及率己被国际社会作为衡量一个国家智能化、数字化、网络化的重要标志。传感器技术是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋,也是当代科学技术发展的一个重要标志,它与通信技术、计算机技术构成信息产业的三大支柱之一。如果说计算机是人类大脑的扩展,那么传感器就是人类五官的延伸,当集成电路、计算机技术飞速发展时,人们才逐步认识信息摄取装置——传感器没有跟上信息技术的发展而惊呼“大脑发达、五官不灵”。从八十年代起,逐步在世界范围内掀起了一股“传感器热”。美国早在80年代就声称世界已进入传感器时代,日本则把传感器技术列为十大技术之创立。日本工商界人士声称“支配了传感器技术就能够支配新时代”。世界技术发达国家对开发传感器技术部十分重视。美、日、英、法、德和独联体等国都把传感器技术列为国家重点开发关键技术之一。美国国家长期安全和经济繁荣至关重要的22项技术中有6项与传感器信息处理技术直接相关。关于保护美国武器系统质量优势至关重要的关键技术,其中8项为无源传感器。美国空军2000年举出15项有助于提高21世纪空军能力关键技术,传感器技术名列第二。日本对开发和利用传感器技术相当重视并列为国家重点发展6大核心技术之一。日本科学技术厅制定的90年代重点科研项目中有70个重点课题,其中有18项是与传感器技术密切相关。美国早在80年代初就成立了国家技术小组(BTG),帮助政府组织和领导各大公司与国家企事业部门的传感器技术开发工作。美国国防部将传感器技术视为今年20项关键技术之一,日本把传感器技术与计算机、通信、激光半导体、超导并列为6大核心枝术,德国视军用传感器为优先发展技术,英、法等国对传感器的开发投资逐年升级,原苏联军事航天计划中的第五条列有传感器技术。正是由于世界各国普遍重视和投入开发,传感器发展十分迅速,在近十几年来其产量及市场需求年增长率均在10%以上。目前世界上从事传感器研制生产单位已增到5000余家。美国、欧洲、俄罗斯各自从事传感器研究和生产厂家1000余家,日本有800余家。1.电阻传感器①电阻式传感器介绍电阻式传感器的基本原理是将被测的非电量转化成电阻值的变化,再经过转换电路变成电量输出。根据传感器组成材料变化或传感器原理变化,产生了各种各样的电阻式传感器,主要包括应变式传感器及压阻式传感器。电阻传感器可以测量力、压力、位移、应变、加速度和温度等非电量参数。电阻式传感器结构简单,性能稳定,灵敏度较高,有的还可用于动态测量。②常见应变片材料材料名称成分灵敏度电阻率温度系数线胀系数元素含量Sgmm2/m×10-6/℃×10-6/℃康铜CuNi57%43%1.7~2.10.49-20~2014.9镍铬合金NiCr80%20%2.1~2.50.9~1.1110~15014.0镍铬铝合金(卡玛合金)NiCrAlFe73%20%3~4%余量2.4~2.61.33-10~1013.3③应用注意事项(1)应变极限随应变加大,应变器件输出的非线性加大,一般将误差达到10%时对应的应变,作为应变器件的应变极限。(2)机械滞后敏感栅、底基及胶粘层承受机械应变后,一般都会存在残余变形,造成应变器件的机械滞后。(3)零漂和蠕变在恒定温度,无机械应变时,应变器件阻值随时间变化的特性,称为零漂;在恒定温度、恒定应变时,应变器件阻值随时间变化的特性,称为蠕变。(4)零漂和蠕变的原因应变器件制造过程中产生的内应力;在一定温度和载荷条件下电阻丝材料、胶粘剂和底基内部结构的变化。(5)绝缘电阻粘在试件上的应变器件的引出线与试件之间的电阻通常绝缘电阻为50-100M,在长时间精密测量时要求大于100M,甚至达到10G。(6)最大工作电流应变器件正常工作允许通过的最大电流。通常静态测量时为25mA,动态测量时为75-100mA。工作电流过大会导致应变器件过热、灵敏度变化、零漂和蠕变增加,甚至烧毁。(7)温度影响由温度变化导致的应变器件电阻变化与由应变引起的电阻变化往往具有同等数量级,须用适当电路进行温度补偿。④产品图片两端梁悬臂梁扭矩传感器压力传感器位移传感器压力传感器2.电感传感器①电感式传感器介绍电感式传感器利用电磁感应原理将被测非电量如位移、压力、流量、振动等转换成线圈自感量L或互感量M的变化,再由测量电路转换为电压或电流的变化量输出。电感式传感器具有结构简单,工作可靠,测量精度高,零点稳定,输出功率较大等一系列优点,其主要缺点是灵敏度、线性度和测量范围相互制约,传感器自身频率响应低,不适用于快速动态测量。电感式传感器种类很多,常见的有自感式传感器,互感式传感器和电涡流式传感器三种。②电感式传感器的应用电感传感器能实现信息的远距离传输、记录、显示和控制,在工业自动控制系统中被广泛采用。它主要用于测量微位移,凡是能转换成位移量变化的参数,如压力、力、压差、加速度、振动、应变、流量、厚度、液位等都可以用电感式传感器来进行测量。其应用范围主要包括:可测量弯曲和偏移;可测量振荡的振幅高度;可控制尺寸的稳定性;可控制定位;可控制对中心率或偏心率。电感传感器还可用作磁敏速度开关、齿轮龄条测速等,该类传感器广泛应用于纺织、化纤、机床、机械、冶金、机车汽车等行业的链轮齿速度检测,链输送带的速度和距离检测,齿轮龄计数转速表及汽车防护系统的控制等。另外该类传感器还可用在给料管系统中小物体检测、物体喷出控制、断线监测、小零件区分、厚度检测和位置控制等。③三种常用电感传感器2.1变磁阻式传感器M.Faraday电磁感应定律(1831年):当一个线圈中电流i变化时,该电流产生的磁通Φ也随之变化,因而在线圈本身产生感应电势e,这种现象称之为自感。产生的感应电势称为自感电势。变磁阻式传感器的结构如图3.1所示。它由线圈、铁芯和衔铁三部分组成。铁芯和衔铁由导磁材料如硅钢片或坡莫合金制成,在铁芯和衔铁之间有气隙,气隙厚度为δ,传感器的运动部分与衔铁相连。当衔铁移动时,气隙厚度δ发生改变,引起磁路中磁阻变化,从而导致电感线圈的电感值变化,因此只要能测出这种电感量的变化,就能确定衔铁位移量的大小和方向。图3.1变磁阻式传感器结构示意图特点:变磁阻式传感器具有很高的灵敏度,这样对待测信号的放大倍数要求低。但是受气隙δ宽度的影响,该类传感器的测量范围很小。2.2差动变压器式传感器把被测的非电量变化转换为线圈互感变化的传感器称为互感式传感器。这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动形式连接,故称差动变压器式传感器。差动变压器结构形式较多,有变隙式、变面积式和螺线管式等。变隙式传感器的结构原理如图3.2所示。图3.2差动变压器式传感器的结构示意图图3.2中r1a与L1a,r1b与L1b,r2a与L2a,r2b与L2b,分别为W1a,W1b,W2a,W2b绕阻的直流电阻与电感。2.3电涡流式传感器金属导体置于变化着的磁场中,导体内就会产生感应电流,这种电流像水中旋涡一样在导体转圈,这种现象称为涡流效应。电涡流式传感器结构示意图如图3.3所示。根据法拉第定律,当传感器线圈通以正弦交变电流I1时,线圈周围空间必然产生正弦交变磁场H1,使置于此磁场中的金属导体中感应电涡流I2,I2又产生新的交变磁场H2。图3.3电涡流式传感器结构④电感式传感器的优缺点电感式传感器的主要优点是:(1)结构简单,可靠;(2)灵敏度高,最高分辨力达0.1μm;(3)测量精确度高,输出线性度可达±0.1%;(4)输出功率较大,在某些情况下可不经放大,直接接二次仪表。其缺点是:(1)传感器本身的频率响应不高,不适于快速动态测量;(2)对激磁电源的频率和幅度的稳定度要求较高;(3)传感器分辨力与测量范围有关,测量范围大,分辨力低,反之则高。⑤使用注意事项(1)方案选择在选择方案之前应首先弄清给定的技术指标,如示值范围、示值误差、分辨力、重复性误差、时漂、温漂、使用环境等。(2)铁心材料的选择铁心材料选择的主要依据是要具有较高的导磁系数,较高的饱和磁感应强度和较小的磁滞损耗,剩磁和矫顽磁力都要小。另外,还要求电阻率大,居里点温度高,磁性能稳定,便于加工等。常用导磁材料有铁氧体、铁镍合金、硅钢片和纯铁。(3)电源频率的选择提高电源频率有下列优点:能提高线圈的品质因数;灵敏度有一定的提高;适当提高频率还有利于放大器的设计。但是,过高的电源频率也会带来缺点,如铁心涡流损耗增加;导线的集肤效应等会使灵敏度减低;增加寄生电容(包括线圈匝间电容)以及外界干扰的影响。⑥产品图片电涡流式传感器差动变压器式传感器电感式测微仪3.热电传感器①热电式传感器介绍热电式传感器是一种将温度变化转换为电量的装置。它是利用某些材料或元件的性能随温度变化的特性来进行测量的。例如将温度变化转换为电阻、热电动势、热膨胀、导磁率等的变化,再通过适当的测量电路达到检测温度的目的。按照测温方法的不同,热电式传感器分为接触式和非接触式两大类。②热电式传感器应用热电传感器主要应用于对温度的检测,广泛应用于冶金,锻造,化工,电子,环境监测,温控等领域。③热电式传感器分类3.1接触式热电传感器3.1.1热电偶温度传感器热电偶温度传感器的工作原理基于材料的热电效应:两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T0不同时,在该回路中就会产生电动势。如图1所示图1热电偶式传感器热偶式传感器的影响因素取决于材料和接点温度,与形状、尺寸等无关,两热电极相同时,总电动势为0,两接点温度相同时,总电动势为0。对于已选定的热电偶,当参考端温度t0恒定时,eAB(t0)=c为常数,则总的热电动势就只与温度t成单值函数关系,即:可见,只要测出eAB(T,T0)的大小,就能得到被测温度t,这就是利用热电偶测温的原理。表1为常用的电偶材料搭配及性能指标。表1常用的电偶材料及性能指标热偶名称适用温度(1型)允许差值铜-铜镍-40~350℃0.5℃镍铬-铜镍-40~800℃1.5℃铁-铜镍-40~750℃1.5℃铂铑-铂0~1100℃1.5℃热电偶式传感器的缺点:体积大,灵敏度低。热电偶式传感器的优点:寿命长,抗干扰能力好,测温范围宽。3.1.2热电阻温度传感器热电阻温度传感器是利用导体或半导体的电阻值随温度变化而变化的原理进行测温的。目前最常用的热电阻有铂热电阻和铜热电阻。典型的热阻式传感器如图2所示。表2给出了铜热电阻的分度表。图2热电阻式温度传感器表2铜热电阻分度表(R=50欧)温度/℃-50-40-30-20-1001020304050电阻/Ω39.2441.4043.5545.7047.8550.0052.1445.2856.4258.5660.70温度/℃60708090100110120130140150电阻/Ω62.8464.9867.1269.2671.4073.5475.6877.8379.9882.13热电阻式温度传感器的优点:电阻温度系数大,灵敏度高;电阻率高,热惯性小;结构简单。热电阻式温度传感器的缺点:阻值与温度变化呈非线性;稳定性和互换性差。3.2非接触式电热传感器非接触式测温方法是应用物体的热辐射能量随温度的变化而变化的原理。物体辐射能量的大小与温度有关,当选择合适的接收检测装置时,便可测得被测对象发出的热辐射能量并且转换成可测量和显示的各种信号,实现温度的测量。这类测温方法的温度传感器主要有光电高温传感器、红外辐射温度传感器、光纤高温传感器等。测量范围600—6000度。红外辐射温度传感器如图3所示。图3红外辐射温度传感器④应用中注意事项选择温度传感器比选择其它类型的传感器所需要考虑的内容更多。首先,必须选择传感器的结构
本文标题:计算机网络
链接地址:https://www.777doc.com/doc-2044601 .html