您好,欢迎访问三七文档
第六章决策分析主要内容一、决策分析框架二、不确定型问题的决策三、风险型问题的决策——决策树四、效用理论五、决策支持系统一、决策分析概述决策是一种过程:情报活动、设计活动、抉择活动、实施活动决策分类:确定型:对未来情况可以获得精确、可靠的数据风险型:未来有几种可能的状态和相应后果,其出现的概率可以预测不确定型:未来可出现的状态和后果难以估计决策分析是为解决风险型和不确定型问题提供一套推理方法和逻辑步骤。决策分析框架确定结构评定后果评定不确定因素评价方案灵敏度分析选择方案收集信息决策分析框架确定决策模型结构:确定决策过程的阶段、相应的环境信息、各阶段的状态和备选方案以及他们间的层次结构关系评定后果:估计备选方案在不同环境状态下所付出的代价和取得的收益后果值评定不确定因素:估计未来环境中各种状态出现的概率评价方案:按估计的后果和概率计算备选方案的效益(效用)指标,按照效益(效用)最大者为最优方案决策分析框架灵敏度分析:由于后果值和概率的主观性和不确定性,确定决策模型中参数的变化范围收集信息:对灵敏度高的参数需收集更多信息进行研究,但考虑信息价值问题选择方案二、不确定型问题的决策决策者根据自己的主观倾向进行决策,根据决策者主观态度不同有以下五种常用的决策准则和方法:悲观主义准则乐观主义准则乐观系数准则最小机会损失准则等可能性准则悲观主义准则从各方案的最小益损值中选择最大的,也称“小中取大”法,是一种万无一失的保守型决策者的选择准则。例如:S1S2S3S4A120012545-25A2300200-50-175A3425210-75-200乐观主义准则决策者对客观情况总是抱乐观态度,从各方案最大益损值中选择最大的,也称“大中取大”。是一种偏于冒进的决策准则。例如:S1S2S3S4A120012545-25A2300200-50-175A3425210-75-200乐观系数准则一种折衷准则,决策者对客观条件的估计既不乐观也不悲观,主张一种平衡,用一个乐观系数α(0≤α≤1),计算各方案的折衷益损值,从中选取最大的。例如:S1S2S3S4α=0.7A120012545-25132.5A2300200-50-175157.5A3425210-75-200237.5最小机会损失准则决策者一般易于接受某状态下收益最大的方案,但由于无法预知那一状态一定出现,当决策者没有采纳收益最大的方案,就会感到后悔,最大收益值与其他收益值之差作为后悔值或机会损失值,然后按悲观主义准则决策。例如:S1S2S3S4A12258500A21251095150A300120175等可能性准则决策者不能肯定那种状态会出现,采取一视同仁的态度,认为出现的可能性相等,有n个状态,其出现的概率均为1/n,计算各方案的期望最大收益值,从中选取最大的。例如:S1S2S3S4ERA120012545-2586.25A2300200-50-17568.75A3425210-75-20090三、风险型问题决策风险型决策也称随机型决策或统计型决策最大可能性法最大期望收益准则(ExpectedMonetaryValue,EMV)最小机会损失准则(ExpectedOpportunityLoss,EOL)决策树法最大可能性法从可能出现的状态中,选择一个概率最大的状态进行决策,而不考虑其他状态,问题转化为确定型决策应用条件:在收益矩阵中的元素差别不大,而各状态中某一状态的概率明显地大的多;如果各状态概率很接近,而益损值相差较大时,不宜采用。S1(0.1)S2(0.8)S3(0.1)甲406015乙504030丙604010丁50305EMV和EOL决策目标考虑的是收益值,计算各方案的期望收益值,从中选择期望收益最大的。决策目标考虑的是损失值,计算各方案的期望损失值,从中选取期望损失最小的。决策树法描述多级决策(序列决策)的工具“”表示决策节点,从它引出的分枝为方案枝,分枝数量与方案数量相同,分枝上要注明方案名称。“O”表示状态节点,从它引出的分枝为状态分枝或概率分枝,分枝数量与可能出现的自然状态数量相同,分枝上要注明状态出现的概率。“△”表示结果节点,不同方案在各种状态下所取得的结果(益损值),标注在结果节点的右端。决策树1级决策2级决策A1A2A3S1S2S3决策树举例有一钻探队做石油钻探,可以先做地震试验,费用为0.3万元/次,然后决定钻井与否,钻井费用为1万元,出油收入为4万元。根据历史资料,试验结果好的概率为0.6,不好的概率为0.4;结果好钻井出油的概率为0.85,不出油的概率为0.15;结果不好钻井出油的概率为0.1,不出油的概率为0.9。也可不做试验而直接凭经验决定是否钻井,这时出油的概率为0.55,不出油的概率为0.45,试用决策树进行决策。决策树计算试验-0.3不试验好0.6不好0.4钻井不-10.850.154004004003.42.40.402.21.21.441.20.10.90.550.45不出油结论:不试验直接钻井,期望收入为1.2万元。讨论练习某企业对产品生产工艺进行改进,提出两个方案:一是从国外引进生产线,另一是自行设计生产线。引进投资较大,但产品质量好成本低,成功率为80%;自行设计投资相对较小,产品质量也有一定保证成本也较低,只是成功率低些为60%。进一步考虑到无论引进还是自行设计,生产能力都能得到提高。因此企业又制订了两个生产方案:一是产量与过去保持相同,一是产量增大。为此又需要决策,最后若引进与自行设计不成功,则企业只能采用原工艺生产,产量保持不变。企业打算该产品生产五年,根据市场预测,五年内产品价格下跌的概率为0.1,不变的概率为0.5,上涨的概率为0.4,通过估算各种方案在不同价格状态下的益损值如表所示,试用决策树进行决策。状态价跌价平价涨概率0.10.50.4按原工艺生产的益损值-1000125引进(成功0.8)产量不变-25080200产量增加-400100300自行设计(成功0.6)产量不变-2500250产量增加-350-250650贝叶斯决策(条件概率)多级决策中,各种状态之间是相关的,其出现的概率是条件概率。为了准确预测各种状态出现的概率,一般需要将某状态看成独立于其他状态,将条件概率简化为非条件概率,给出最后一级决策可能出现状态的概率,称为先验概率,然后通过试验或其他手段获取新信息,用贝叶斯定理修正先验概率,从而转化为后验概率(条件概率)。举例某石油公司考虑在某地钻井,结果可能出现三种情况:无油(0.5)、少油(0.3)、富油(0.2),钻井费用为7万元,如少量出油可收入12万元,大量出油27万元,不出油收入为零;为了避免盲目钻井,可以先进行勘探试验以了解地质结构情况,勘探费用为1万元,勘探结果可能会是:地质构造差、构造一般、构造良好,根据过去的经验,地质构造与油井出油的关系如表所示,试用决策树进行决策。P(θk/Si)构造差(θ1)一般(θ2)良好(θ3)无油(S1)0.60.30.1少油(S2)0.30.40.3富油(S3)0.10.40.5根据全概率公式有:P(θ1)=0.41,P(θ2)=0.35,P(θ3)=0.24根据贝叶斯公式有:31)()()(iikikSSPPP)()()()(kikikiPPPPSSSP(Si/θk)无油(S1)少油(S2)富油(S3)构造差(θ1)0.73170.21950.0488一般(θ2)0.42860.34280.2286良好(θ3)0.20830.37500.4617灵敏度分析某工程准备施工,需要决策下个月是否开工,开工后天气好可按期完工,获利5万元,天气不好损失1万元;如不开工不论天气好坏,均需支付窝工费0.1万元,根据气象统计资料,下个月天气好的概率P=0.2,试进行决策。如下个月天气好的概率P=0.1,试进行决策。转折概率方案可能出现的状态的概率会导致最优方案的变化,使最优方案发生变化的概率称之为转折概率在上例中:P×5+(1-P)×(-1)=P×(-0.1)+(1-P)×(-0.1)得P=0.15,则转折概率为P=0.15,当P大于0.15时,开工方案比较合理;当P小于0.15时,不开工比较好。信息价值分析在灵敏度分析后,有些关键状态的概率有时灵敏度很高,需要进一步收集信息,提高先验概率的精度,来更准确可靠地评定这些参数。进一步收集信息需要进行“调查研究”,通过收集样本、统计分析取得更可靠的信息。“调查研究”所得到的咨询信息一般都有误差,调研结果要考虑其失误的可能性“调查研究”需要费用,不管咨询结果是否有用,都得付费,因此在调研前要考虑所得到的信息用途多大,即信息的价值分析。为了衡量调研人员提供信息的用途大小,一般根据历史资料,用该人员(单位)过去提供正确或不正确信息的概率来表示。举例某超市欲在某小区附近设立一分店。设立分店有三种可能的后果:I—赢利额每年增加到300万元,P—维持不设分店的情况赢利100万元,R—亏损300万元。各种后果出现的概率经分析判断,估计为0.2、0.5、0.3,试进行决策。举例画出决策树,按照期望收益值最优准则,将选择设分店方案,期望收益为20万元。如三种后果的概率为0.2、0.4、0.4,则设分店就会亏损20万元,因此不设分店为好。最优决策对设定的概率值很灵敏,需要进一步进行市场研究,以使概率值精度更高些。请咨询公司来进行市场调查,决策者希望咨询公司提供未来出现I、P、R中的何种状态。首先要考虑是否请咨询公司进行市场研究?考虑该公司有关市场研究成功率。咨询公司研究结果所提供的信息为:对设立新分店的方案是赞成还是反对。根据历史资料结合原来估计的先验概率,可以得到:如将来赢利,咨询公司给出赞成或反对的概率是多少?状态赞成反对IP(F/I)=0.8P(U/I)=0.2PP(F/P)=0.5P(U/P)=0.5RP(F/R)=0.1P(U/R)=0.9例题分析将是否进行市场研究作为第一级决策,咨询公司赞成或反对作为决策后的两种状态。在原来决策树基础上,增加一级决策,构成增广决策树。得到进行市场研究后期望收益值为64万元,与无市场研究的期望收益值之差为44万元——是市场研究提供信息的价值,此值是决策者可能付给市场研究的最大费用。全信息价值如现在经过市场研究可以确切地估计未来到底发生I、P、R中何种状态,则称之为完全信息。如预测未来一定出现I或P,则采取设立分店方案,如预测结果是R,则放弃设分店方案,相应的收益为:300万元、100万元、0;三种状态的先验概率为:0.2、0.5、0.3。则使用完全信息后的期望收益值为110万元,此值为确定条件下的期望价值,此值与无市场研究情况下的最优期望收益值之差称为完全信息的价值。市场研究效果再好,决策人付出的咨询费也不可能大于此值。四、效用值理论决策准则可传递性独立性期望收益值的缺陷后果多样性决策者的价值观•需要一种能表达人们主观价值的衡量指标,并能综合衡量各种定量和定性的后果•这样的指标没有统一的客观尺度,因人而异,视个人的经济、社会和心理条件而定伯努利期望效用值理论效用值:人们在拥有财富多少不一的条件下,增加同样的财富所感受到的效用值是不同的,随财富的增加效用值总是在增加,但增长率是递减的买彩券:5(500)元一张,0.5概率中奖得10(1000)元,期望收益值为零;问题:如何遵循理性原则求得效用值?冯诺曼-摩根斯坦期望效用值理论定义了计量效用值,使效用值的计算成为现实在“伯”的基础上提出,针对风险状况下财富的价值,而“伯”的是针对确定状况下财富的价值而提出的事态体风险决策的基本表达符号表示状态节点,各条射线表示可能出现的状态,P1,P2,…,Pm和C1,C2,…,Cm表示相应的概率和后果值事态体的表达式为[P1C1,P2C2,…,PmCm]如m=2,则[C1P,C2(1-P)]为标准事态体,P表示较优后果值出现的概率事态体等价确定值
本文标题:系统工程4
链接地址:https://www.777doc.com/doc-205098 .html