您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 苏教版课程标准实验教科书数学五年级下册教材分析
苏教版课程标准实验教科书数学五年级(下册)教材分析全册教材安排本册教材共安排11个单元。“数与代数”领域的内容是本册教材的主要内容,共安排7个单元,分成五部分。第一部分数的认识,有三个单元:第三单元“公倍数和公因数”,第四单元“认识分数”和第六单元“分数的基本性质”。第二部分数的运算,是第八单元“分数加法和减法”。第三部分式与方程,是第一单元的“方程”;第四部分探索规律,是第五单元的“找规律”。第五部分是第九单元“解决问题的策略”。数的认识中,“公倍数和公因数”研究两个自然数的倍数和因数的关系。这一单元的要求与大纲的要求比做了调整。第四单元和第六单元是有关分数的意义和基本性质的教学,学生在三年级(上册)和(下册)已经初步认识把一个物体或一个整体平均分成若干份,表示其中的一份或几份的数是分数。同时,学生也认识了小数。这两个单元将揭示分数的意义,研究分数的基本性质。公倍数和公因数的知识是对分数进行通分和约分的基础,因此教材在第三单元先教学“公倍数和公因数”。数的运算中,学生在第一学段结合分数的初步认识,已经学习了计算分母小于10的同分母分数加减法,本册教材在揭示分数的意义后教学异分母分数加减法、分数加减混合运算以及应用运算律进行简便计算。学生在探索异分母分数加减计算的过程中,能加深对分数意义的理解,计算的过程又是分数基本性质的运用。分数加减混合运算以及应用运算律进行简便计算的教学,能及时引导学生将整数加法的运算顺序和运算律推广到分数加法中,发展迁移能力。由于方程的教学安排在第一单元,在分数加法和减法单元中,也相机安排一些含有分数的方程。第五单元的“找规律”教学简单图形平移后覆盖次数的规律。由于学生对图形平移已有初步体验,也具有一定的探索规律的能力,因此安排这一内容是恰当的,能逐步提高学生探索数学规律的能力。第九单元“解决问题的策略”是在用列表和画图的策略解决问题的基础上,教学用倒推(还原)的策略分析数量关系,解决问题。这对发展学生的逆向思维是有价值的。同时,能进一步增强学生运用策略分析问题的意识,提高解决问题的能力。“空间与图形”领域安排2个单元,一个单元是图形的认识,即第十单元的“圆”;一个单元是图形与位置,即第二单元的“确定位置”。对平面上常见的直线图形的认识经验将有助于学生对曲线图形的认识,这也是学生对平面图形认知结构的一次重要拓展。本册教材的确定位置主要教学在具体情境中用数对表示位置或在方格纸上用数对确定位置。在二年级(上册)已经教学了用类似“第几排第几个”的方式确定具体情境中的位置,这是学生学习本单元内容的基础。本单元的教学将进一步提升学生的已有经验,为第三学段学习“图形与坐标”的内容打下基础。“统计与概率”领域安排1个单元,是第七单元的“统计”。教学复式折线统计图,进一步丰富学生对表示数据方式的认识,逐步培养学生根据需要,有效地表示数据的能力。最后1个单元安排“整理与复习”。“实践与综合应用”领域的内容在本册教材中同样作了富有创意的尝试,共安排四次。“数字与信息”进一步让学生体会数在日常生活中的作用,并会运用数表示事物,进行交流;“球的反弹高度”结合分数的学习,让学生通过实验记录数据,研究球的反弹高度大约是下落高度的几分之几,各中不同球的反弹高度是否相同。“奇妙的图形密铺”让学生经历观察、操作、欣赏与设计的活动,初步认识图形能否密铺、怎样密铺。“画出美丽的图案”则结合圆的认识,让学生用圆规画圆的方法画出美丽的图案。这些实践与综合应用有助于学生进一步了解数学与生活的广泛联系,加深学生对所学知识的理解,培养综合运用知识解决问题的能力,获得积极的情感体验。各单元教材分析第一单元方程一、教学内容教材分三段安排:例1、例2教学等式的含义与方程的意义,用方程表示简单情境的等量关系;例3~例6教学等式的性质和运用等式的性质解一步计算的方程;例7教学列方程解决一步计算的实际问题。最后还安排了整理与练习。二、教材编写特点和教学建议1.在具体情境中认识方程的意义。“含有未知数的等式是方程”,这是用定义的形式来揭示概念。小学数学中揭示概念的方式有多种,这里对方程的定义采取的是属加种差定义方式:种差+邻近的属概念=被定义概念。这里,被定义概念邻近的属是“等式”,种差是“含有未知数”。教材先教学等式,再教学方程的意义。虽然学生在数学学习中一直接触着等式,但学生大都关注的是通过运算把结果写在等号后面,并没有明确地认识等号两边的式子和数表示相等的量,地位是均等的。教材通过天平平衡的具体情境,让学生借助直观,体会到50克加50克和100克质量相等,从而抽象出等式50+50=100。这时,学生将不仅仅从运算的角度来看待这个式子,而更多的会从两个量的相等关系来认识这个式子。在此基础上,教材继续通过天平,呈现了两端质量相等与不等的四种情况,引导学生用等式和不等式分别表示两端的质量,并让学生判断这些式子哪些是等式,加深学生对等式的印象,为学生认识方程的意义后辨析方程和等式的关系打下基础。教学时,应注意下面几个问题:(1)要让学生经历由图过渡到式子的抽象过程。先通过观察天平图,判断物体的轻重,再用式子表示两端物体的质量关系;(2)最后一个图,可以写出X+X=200,但要引导等号左边写成乘法形式,得出2X=200,这有助于学生认识方程的外延;(3)在交流等式和方程有什么关系时,应引导学生观察例1和例2中的具体实例进行说明。教师可在学生交流的基础上,让学生对50+50=100、X+50100和X+50200不能称为方程的原因作出解释,能加深学生对方程的认识。还可以引导学生从集合的角度体会这两个概念之间的关系。教材“试一试”安排了看图列方程,即用方程表示简单情境的等量关系。第一幅图继续呈现天平的情境,第二幅图是学生一年级(上册)解决过的用括线形式表示的实际问题,学生比较熟悉,但是改变列算式求答案的思维习惯为列方程表示等量关系是有难度的。这里应该突出两个部分相加和是总数这一数量关系。结合简单情境列方程,有助于学生进一步体会方程的意义。2.循序渐进地教学等式的性质和用等式的性质解方程。考虑到中小学学习的衔接,课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。本单元教学解一步计算的方程,由于不再像过去那样,利用四则计算各部分之间的关系解方程,因此,暂时只解未知数不是减数和除数的方程。等式的性质是指等式两边都加上、减去、乘或除以同一个数(除以一个数时0除外),所得结果仍然是等式。教材“循序渐进”的安排体现在两个方面:第一个方面,将等式的性质分别安排在两个例题中进行教学,例3教学等式两边都加上或减去同一个数,所得结果仍然是等式的性质,例4教学用相应的性质解方程;例5教学等式两边都乘或除以同一个数(除以一个数时0除外),所得结果仍然是等式的性质,例6教学用相应的性质解方程。中间安排了练习一,让学生在内化对等式部分性质的基础上,进一步学习新的性质。这样的安排,分散了学习的难点。第二个方面,在引导学生发现等式性质的过程中,逐步推进:一是从不是方程的等式过渡到方程,二是由加同一个数过渡到减同一个数。例3结合天平平衡的情境呈现了四幅图,第一幅图在20=20的基础上,得到20+10=20+10,学生很容易理解;第二幅图在X=50的基础上,得到X+20=50+20;通过这两个情境,学生发现“同时加一个数,结果仍然是等式”。第三幅和第四幅图都是同时减去一个数,结果仍然是等式的情况。教学时,应引导学生结合每一幅图的结果,用自己的语言交流发现了什么,从而不完全归纳出等式的一个性质。为了让学生联系等式的性质解方程,教材在例4中用天平呈现了数量关系,让学生列方程并学习解方程。教学时,应让学生自己说说怎样求出X的值。学生可能有两种想法:一是从天平两端可同时去掉10克的砝码想到在方程两边都减去10,二是直接根据等式的性质,在方程两边都减去10,结果仍然是等式。要引导学生理解第二种想法。教材编写时注意了三点:一是示范了解方程的书写格式,等式变换时,每个等式的等号要上下对齐;二是利用等式的意义对方程进行检验,只要看左右两边是不是相等;三是联系上面的过程,讲了什么是“解方程”。为了帮助学生逐渐掌握解方程的方法,教材在第4页“练一练”第1题对学生解方程的思考过程作了引导。到了第6页的第7题,则引导学生逐步简化解方程的过程,省去了等式两边同时加或减去一个数的书写步骤,这样能提升学生解方程的能力。例5的教学中,教材在呈现天平情境的基础上,让学生利用已有的学习经验,自己写一些等式,发现等式的新的性质。这有助于培养学生的探索能力。例6则呈现了实际问题的情境,并引导学生自己考虑怎样根据等式的性质解方程。给学生留出了思考的空间。这里的问题涉及的数量关系是学生相对熟悉的,容易想到的长方形面积计算公式,而且未知数已明确地用X表示出来,所以这一问题为学生学习列方程解决实际问题作了重要的过渡。3.体会列方程解决问题的数学思想。方程就是一种数学模型,是刻画现实世界中数量相等关系的数学模型。可以帮助人们更准确清晰地认识、描述和把握现实世界。本单元安排的都是列方程解决一步计算的问题。列方程解决问题的关键是找到问题中数量之间的相等关系。列方程解决问题与列算式解决问题相比,是思维方式的飞跃。列算式解决问题,是通过已知求出未知,已知条件作为一方,问题作为一方;列方程解决问题则是把已知和未知更紧密地联系在一起,看成地位相同的量共同参与运算。教学方程的意义时,教材用天平图、带括线的图画、线段图等方式对怎样列方程,列出的方程表示什么意思加以体会。要注意引导学生联系生活经验,根据事情发展的线索理顺数量关系。在列方程解决实际问题的过程中,教材主要安排的是求和、相差关系和倍数关系的问题。这些是最基本的数量关系。应引导学生积极参与解决问题的活动,具体分以下几步:(1)明确条件和问题;(2)分析问题中已知量和未知量的相等关系;(3)把数量间的相等关系“翻译”成未知数X和已知数之间相等关系的方程。这样的过程就是建立数学模型的过程。其中第(2)步是关键。当然,对于某一个问题,由于数量间相等关系的表达方式会不同,因此有时可以列出不同的方程。但教学时不宜过多的发散,应帮助学生掌握最基本的数量关系列出的方程。在“试一试”中,教材为学生提示了数量间的等量关系式,引导学生逐步学会分析数量间的相等关系。教材在整理与练习中,还安排探索与实践的问题,提高学生探索规律的能力,体会初步的数学模型思想。像13页的第8题,分四步引导学生探索并运用规律:第一步,先写出3组连续的自然数,分别求和;第二步,引导学生说说发现了什么规律,用语言表达这一数学模型;第三步,直接运用发现的规律列方程解决问题;第四步,拓展规律,运用连续5个奇数的和与中间数的关系,列方程解决问题。第二单元确定位置一、教学内容分两个例题:例1教学用数对表示位置;例2教学在方格纸上用数对确定位置。二、教材编写特点和教学建议1.从实际情境出发,提升学生的已有经验。学生在二年级上册已经学习过用“第几排第几个”及类似的方式来描述实际情境中物体的位置。在教学例1时应充分利用并及时提升学生的这一经验。具体可以分以下几个环节展开:(1)呈现教室里的座位场景,让学生用已有的经验描述某个学生的位置,同时产生正确、简明地描述位置的需要;(2)介绍“列”“行”的规定;(3)将实际场景抽象成“行、列”的方式排列,确定第几列是从左往右数,确定第几行是从前往后数,这些都是人们的约定;(4)学习用数对表示位置。在教学用数对表示位置时,应沟通实际场景、语言描述和数对表示的联系。由于在直角坐标系中是按先横轴再纵轴的顺序表示数的,所以用数对表示数时,也是按先列数再排数的顺序。这与学生已有的确定位置的经验有时并不一致。就如,例1中,我们会说小军坐在第3排第4个,但用数对只能表示成(4,3)。2.呈现丰富的情境,留下自主探索的空间。教学在方格纸上用数对确定位置时,教材给出了公园平面图,标出了行数和列数。在明确书报亭的位置是(2,3)后,教材放手让学生用数对表示其他7个地点的位置。这给学生留下了自主探索的空间。教材还有意识地
本文标题:苏教版课程标准实验教科书数学五年级下册教材分析
链接地址:https://www.777doc.com/doc-2127414 .html