您好,欢迎访问三七文档
高等数学李苹计算机科学学院oxyABL一、问题的提出1nMiM1iM2M1Mixiy实例:变力沿曲线所作的功,:BALjyxQiyxPyxF),(),(),(常力所作的功分割.),,(,),,(,1111110BMyxMyxMMAnnnn.)()(1jyixMMiiii.ABFW求和.]),(),([1niiiiiiiyQxP取极限.]),(),([lim10niiiiiiiyQxPW近似值精确值,),(),(),(jQiPFiiiiii取,),(1iiiiiMMFW.),(),(iiiiiiiyQxPW即niiWW1oxyABL1nMiM1iM2M1M),(iiFixiy二、对坐标的曲线积分的概念,0.),(,,).,;,,2,1(),(,),,(),,(.),(),,(,11101111222111时长度的最大值如果当各小弧段上任意取定的点为点设个有向小弧段分成把上的点用上有界在函数向光滑曲线弧的一条有到点面内从点为设iiiiiiiiiiniinnnMMyyyxxxBMAMniMMnLyxMyxMyxMLLyxQyxPBAxoyL1.定义.),(lim),(,(),(,),(101iiniiLniiiixPdxyxPxLyxPxP记作或称第二类曲线积分)积分的曲线上对坐标在有向曲线弧数则称此极限为函的极限存在类似地定义.),(lim),(10iiniiLyQdyyxQ,),(),,(叫做被积函数其中yxQyxP.叫积分弧段L2.存在条件:.,),(),,(第二类曲线积分存在上连续时在光滑曲线弧当LyxQyxP3.组合形式LLLdyyxQdxyxPdyyxQdxyxP),(),(),(),(.,jdyidxdsjQiPF其中.LdsF4.推广空间有向曲线弧.),,(lim),,(10iiiniixPdxzyxP.RdzQdyPdx.),,(lim),,(10iiiniiyQdyzyxQ.),,(lim),,(10iiiniizRdzzyxR5.性质.,)1(2121LLLQdyPdxQdyPdxQdyPdxLLL则和分成如果把则有向曲线弧方向相反的是与是有向曲线弧设,,)2(LLL即对坐标的曲线积分与曲线的方向有关.LLdyyxQdxyxPdyyxQdxyxP),(),(),(),(三、对坐标的曲线积分的计算,),(),(,0)()(,)(),(,),(,),(),(,),(),,(22存在则曲线积分且续导数一阶连为端点的闭区间上具有及在以运动到终点沿的起点从点时到变单调地由当参数的参数方程为续上有定义且连在曲线弧设LdyyxQdxyxPttttBLALyxMttytxLLyxQyxP定理dttttQtttPdyyxQdxyxPL)}()](),([)()](),([{),(),(且特殊情形.)(:)1(baxxyyL,终点为起点为.)}()](,[)](,[{dxxyxyxQxyxPQdyPdxbaL则.)(:)2(dcyyxxL,终点为起点为.]}),([)(]),([{dyyyxQyxyyxPQdyPdxdcL则.,,)()()(:)3(终点起点推广ttztytxdtttttRttttQttttPRdzQdyPdx)}()](),(),([)()](),(),([)()](),(),([{(4)两类曲线积分之间的联系:,)()(tytxL:设有向平面曲线弧为,,),(为处的切线向量的方向角上点yxLLLdsQPQdyPdx)coscos(则其中,)()()(cos22ttt,)()()(cos22ttt(可以推广到空间曲线上),,,),,(为处的切线向量的方向角上点zyxdsRQPRdzQdyPdx)coscoscos(则dstArdA,dsAt可用向量表示,其中},,{RQPA},cos,cos,{cost},,{dzdydxdstrd有向曲线元;.上的投影在向量为向量tAAt处的单位切向量上点),,(zyx例1.)1,1()1,1(,2的一段弧到上从为抛物线其中计算BAxyLxydxL解的定积分,化为对x)1(.xyOBAOLxydxxydxxydx1001)(dxxxdxxx10232dxx.54xy2)1,1(A)1,1(B的定积分,化为对y)2(,2yxABLxydxxydx1122)(dyyyy.11到从y1142dyy.54xy2)1,1(A)1,1(B.)0,()0,()2(;)1(,2的直线段轴到点沿从点的上半圆周针方向绕行、圆心为原点、按逆时半径为为其中计算aBxaAaLdxyL例2解,sincos:)1(ayaxL,变到从0)0,(aA)0,(aB0原式daa)sin(sin22)0,(aA)0,(aB.343a,0:)2(yL,变到从aaxaadx0原式.0问题:被积函数相同,起点和终点也相同,但路径不同积分结果不同.03a)(cos)cos1(2d例3).1,1(),0,1()0,0(,,)3(;)1,1()0,0()2(;)1,1()0,0()1(,2222依次是点,这里有向折线的一段弧到上从抛物线的一段弧到上从抛物线为其中计算BAOOABBOyxBOxyLdyxxydxL2xy)0,1(A)1,1(B解.)1(的积分化为对x,10,:2变到从xxyL1022)22(dxxxxx原式1034dxx.1)0,1(A)1,1(B2yx.)2(的积分化为对y,10,:2变到从yyxL1042)22(dyyyyy原式1045dxy.1)0,1(A)1,1(B)3(ABOAdyxxydxdyxxydx2222原式,上在OA,10,0变到从xy1022)002(2dxxxdyxxydxOA.0,上在AB,10,1变到从yx102)102(2dyydyxxydxAB.110原式.1)0,1(A)1,1(B问题:被积函数相同,起点和终点也相同,但路径不同而积分结果相同.四、小结1.对坐标曲线积分的概念2.对坐标曲线积分的计算3.两类曲线积分之间的联系一、区域连通性的分类设D为平面区域,如果D内任一闭曲线所围成的部分都属于D,则称D为平面单连通区域,否则称为复连通区域.复连通区域单连通区域DD设空间区域G,如果G内任一闭曲面所围成的区域全属于G,则称G是空间二维单连通域;如果G内任一闭曲线总可以张一片完全属于G的曲面,则称G为空间一维单连通区域.GGG一维单连通二维单连通一维单连通二维不连通一维不连通二维单连通设闭区域D由分段光滑的曲线L围成,函数),(),(yxQyxP及在D上具有一阶连续偏导数,则有LDQdyPdxdxdyyPxQ)((1)其中L是D的取正向的边界曲线,公式(1)叫做格林公式.二、格林公式定理1连成与由21LLL组成与由21LLL边界曲线L的正向:当观察者沿边界行走时,区域D总在他的左边.2LD1L2L1LD}),()(),{(21bxaxyxyxD证明(1)若区域D既是X型又是Y型,即平行于坐标轴的直线和L至多交于两点.}),()(),{(21dycyxyyxDyxoabDcd)(1xy)(2xyABCE)(2yx)(1yxdxxQdydxdyxQyydcD)()(21dcdcdyyyQdyyyQ)),(()),((12CAECBEdyyxQdyyxQ),(),(EACCBEdyyxQdyyxQ),(),(LdyyxQ),(同理可证LDdxyxPdxdyyP),(yxod)(2yxDcCE)(1yx若区域D由按段光滑的闭曲线围成.如图,证明(2)L1L2L3LD1D2D3D两式相加得LDQdyPdxdxdyyPxQ)(将D分成三个既是X型又是Y型的区域1D,2D,3D.321)()(DDDDdxdyyPxQdxdyyPxQ321)()()(DDDdxdyyPxQdxdyyPxQdxdyyPxQ321LLLQdyPdxQdyPdxQdyPdxLQdyPdx1D2D3DL1L2L3L),(32,1来说为正方向对DLLLGD3L2LFCE1LAB证明(3)若区域不止由一条闭曲线所围成.添加直线段AB,CE.则D的边界曲线由AB,2L,BA,AFC,CE,3L,EC及CGA构成.由(2)知DdxdyyPxQ)(CEAFCBALAB2{CGAECLQdyPdx)(}3LQdyPdx231))((LLLQdyPdx),(32,1来说为正方向对DLLL便于记忆形式:LDQdyPdxdxdyQPyx.格林公式的实质:沟通了沿闭曲线的积分与二重积分之间的联系.xyoL例1计算ABxdy,其中曲线AB是半径为r的圆在第一象限部分.解引入辅助曲线L,1.简化曲线积分三、简单应用ABDBOABOAL应用格林公式,xQP,0有LDxdydxdy,BOABOAxdyxdyxdy,0,0BOOAxdyxdy由于.412rdxdyxdyDAB例2计算Dydxdye2,其中D是以)1,0(),1,1(),0,0(BAO为顶点的三角形闭区域.解令2,0yxeQP,2.简化二重积分xyoAB11D则2yeyPxQ,应用格林公式,有BOABOAyDydyxedxdye221022dxxedyxexOAy).1(211e例3计算Lyxydxxdy22,其中L为一条无重点,分段光滑且不经过原点的连续闭曲线,L的方向为逆时针方向.则当022yx时,有yPyxxyxQ22222)(.记L所围成的闭区域为D,解令2222,yxxQyxyP,L(1)当D)0,0(时,(2)当D)0,0(时,1DrlxyoLD由格林公式知Lyxydxxdy022作位于D内圆周222:ryxl,记1D由L和l所围成,应用格林公式,得yxolLyxydxxdyyxydxxdy2222xyor1DlL02222lLyxydxxdyyxydxxdy(其中l的方向取逆时针方向).2(注意格林公式的条件)drrr22222sincos20格林公式:LDQdyPdxdxdyyPxQ)(取,,xQyP得LDydxxdydxdy2闭区域D的面积LydxxdyA21.取,,0xQP得LxdyA取,0,QyP得LydxA3.计算平面面积曲线AMO由函数],0[
本文标题:第二线积分2
链接地址:https://www.777doc.com/doc-2128574 .html