您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 第六章集成运算放大器的应用
集成运算放大器的应用集成运放最早应用于信号的运算,所以它又被称为运算放大器。随着集成运放技术的发展,目前集成运放的应用几乎渗透到电子技术的各个领域,它成为组成电子系统的基本功能单元。这一章是这门课程的重点内容之一,在学习是我们把这一章的课程分为:§6、1集成运放的应用基础§6、2运算电路§6、3有源滤波电路和电压比较器§6、4总结§6、1集成运放的应用基础这一节我们主要学习理想运放的线性运用和非线性应用的条件及其分析方法。一:低频等效电路在电路中集成运放作为一个完整的独立的器件来对待。于是在分析、计算时我们用等效电路来代替集成运放。由于集成运放主要用于频率不高的场合,因此我们只学习低频率时的等效电路。右图所示为集成运放的符号,它有两个输入端和一个输出端。其中:标有的为同相输入端(输出电压的相位与该输入电压的相位相同)标有的为反相输入端(输出电压的相位与该输入电压的相位相反)二:理想集成运放一般我们是把集成运放视为理想的(将集成运放的各项技术指标理想化)开环电压放大倍数:输入电阻:输入偏置电流:共模抑制比:输出电阻:-3dB带宽:无干扰无噪声失调电压、失调电流及它们的温漂均为零三:集成运放工作在线性区的特性当集成运放工作在线性放大区时的条件是:(1)(2)注:(1)即:同相输入端与反相输入端的电位相等,但不是短路。我们把满足这个条件称为虚短(2)即:理想运放的输入电阻为∞,因此集成运放输入端不取电流。我们在计算电路时,只要是线性应用,均可以应用以上的两个结论,因此我们要掌握好!当集成运放工作在线性区时,它的输入、输出的关系式为:四:集成运放工作在非线性工作区当集成运放工作在非线性区时的条件是:集成运放在非线性工作区内一般是开环运用或加正反馈。它的输入输出关系是:它的输出电压有两种形态:(1)当时,(2)当时,它的输入电流仍为零(因为)即:集成运放工作在不同区域时,近似条件不同,我们在分析集成运放时,应先判断它工作在什麽区域,然后再用上述公式对集成运放进行分析、计算。§6、2运算电路(第一页)这一节我们学习对信号进行比例、加、减、乘、除等运算的电路。此时集成运放工作在线性区。一:比例运算电路定义:将输入信号按比例放大的电路,称为比例运算电路。分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分)比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路输入信号加入反相输入端,电路如图(1)所示:输出特性:因为:,所以:从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。反向比例电路的特点:(1)反向比例电路由于存在虚地,因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低(2)输入电阻低:ri=R1.因此对输入信号的负载能力有一定的要求.(2)同相比例电路输入信号加入同相输入端,电路如图(2)所示:输出特性:因为:(虚短但不是虚地);;所以:改变Rf/R1即可改变Uo的值,输入、输出电压的极性相同同相比例电路的特点:(1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高(3)差动比例电路输入信号分别加之反相输入端和同相输入端,电路图如图(3)所示:它的输出电压为:由此我们可以看出它实际完成的是:对输入两信号的差运算。§6、2运算电路(第二页)二:和、差电路(1)反相求和电路它的电路图如图(1)所示:(输入端的个数可根据需要进行调整)其中电阻R'为:它的输出电压与输入电压的关系为:它可以模拟方程:。它的特点与反相比例电路相同。它可十分方便的某一电路的输入电阻,来改变电路的比例关系,而不影响其它路的比例关系。(2)同相求和电路它的电路图如图(2)所示:(输入端的个数可根据需要进行调整)它的输出电压与输入电压的关系为:。它的调节不如反相求和电路,而且它的共模输入信号大,因此它的应用不很广泛。(3)和差电路它的电路图如图(3)所示:此电路的功能是对Ui1、Ui2进行反相求和,对Ui3、Ui4进行同相求和,然后进行的叠加即得和差结果。它的输入输出电压的关系是:。由于该电路用一只集成运放,它的电阻计算和电路调整均不方便,因此我们常用二级集成运放组成和差电路。它的电路图如图(4)所示它的输入输出电压的关系是:它的后级对前级没有影响(采用的是理想的集成运放),它的计算十分方便。§6、2运算电路(第三页)三:积分电路和微分电路(1)积分电路它可实现积分运算及产生三角波形等。积分运算是:输出电压与输入电压呈积分关系。它的电路图如图(1)所示:它是利用电容的充放电来实现积分运算它的输入、输出电压的关系为:其中:表示电容两端的初始电压值.如果电路输入的电压波形是方形,则产生三角波形输出。(2)微分电路微分是积分的逆运算,它的输出电压与输入电压呈微分关系。电路图如图(2)所示:它的输入、输出电压的关系为:四:对数和指数运算电路(1)对数运算电路对数运算电路就是是输出电压与输入电压呈对数函数。我们把反相比例电路中Rf用二极管或三级管代替级组成了对数运算电路。电路图如图(3)所示:它的输入、输出电压的关系为:(也可以用三级管代替二极管)(2)指数运算电路指数运算电路是对数运算的逆运算,将指数运算电路的二极管(三级管)与电阻R对换即可。电路图如(4)所示它的输入、输出电压的关系为:利用对数和指数运算以及比例,和差运算电路,可组成乘法或除法运算电路和其它非线性运算电路§6、3有源滤波电路和电压比较器(第一页)这一节我们来学习关于滤波电路和电压比较器的一些知识一:滤波电路的基础知识滤波电路的作用:允许规定范围内的信号通过;而使规定范围之外的信号不能通过。滤波电路的分类:(按工作频率的不同)低通滤波器:允许低频率的信号通过,将高频信号衰减。高通滤波器:允许高频信号通过,将低频信号衰减。带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减。带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减。我们在电路分析课程中已学习了,利用电阻、电容等无源器件构成的滤波电路,但它有很大的缺陷如:电路增益小;驱动负载能力差等。为此我们要学习有源滤波电路。二:有源滤波电路(1)低通滤波电路它的电路图如图(1)所示:(我们以无源滤波网络RC接至集成运放的同相输入端为例)它的幅频特性如图(2)所示:它的传输函数为:其中:Aup为通带电压放大被数,;通带截止角频率对于低有源滤波电路,我们可以通过改变电阻Rf和R1的阻值来调节通带电压的放大被数。(2)高通滤波电路它的电路图如图(3)所示:(我们以无源滤波网络接至集成运放的反相输入端为例)同样我们可以得到它的幅频特定如图(4)所示:它的传输函数为:其中:(通带电压放大被数);(通带截止角频率)(3)带通滤波电路和带阻滤波电路将低通滤波电路和高通滤波电路进行不同组合,即可的获得带通滤波电路和带阻滤波电路,它们的电路图分别为:如图(5)所示带通滤波电路;如图(6)所示带阻滤波电路:§6、3有源滤波电路和电压比较器(第二页)这一页我们来学习电压比较器的一些知识一:电压比较器的基础知识电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系)电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。注:电压比较器中的集成运放通常工作在非线性区。及满足如下关系:U-U+时UO=UOLU-U+时UO=UOH二:简单电压比较器我们把参考电压和输入信号分别接至集成运放的同相和反相输入端,就组成了简单的电压比较器。如图(1)、(2)所示:下面我们对它们进行分析一下(只对图(1)所示的电路进行分析)它的传输特性如图(3)所示:它表明:输入电压从低逐渐升高经过UR时,uo将从高电平变为低电平。相反,当输入电压从高逐渐到低时,uo将从低电平变为高电平。定义:阈值电压:我们将比较器的输出电压从一个电平跳变到另一个电平时对应的输入电压的值。它还被称为门限电压。简称为:阈值。用符号UTH表示。利用简单电压比较器可将正弦波变为同频率的方波或矩形波。例:电路如(1)所示,输入电压为正弦波如图(4)所示,试画出输出波形解:输出波形与UR有关,输出波形如图(5)所示简单的电压比较器结构简单,灵敏多高,但是抗干能力差,因此我们就要对它进行改进。改进后的电压比较器有:滞回比较器和窗口比较器。在此对它们不作要求。我们前面学习的比较器都是用集成运放构成的,它存在着一定的缺点。我们一般用集成电压比较器来代替它。集成电压比较器的固有特点是:可直接驱动TTL等数字集成电路器件;它的响应速度比同等价格集成运放构成比较器快;为提高速度,集成电压比较器内部电路的输入级工作电流较大。§6、4总结一:总结这一章是本课程的重点内容,我们在学习是要注意理想运放电路的分析计算方法。这一章我们要重点掌握的内容有:(1)理想运放的线性运用和非线性应用的条件及其分析方法;(2)反相、同相和差动放大电路及其性能特点;(3)和、差电路的类型和运算;(4)反相积分电路及其输出电压的计算;(5)一阶RC低通、高通滤波电路的组成特点以及传输函数、幅频特性和截止频率的计算,带通、带阻滤波器的实现方法。(6)简单电压比较器及其传输特性的画法。在已知输入波形下,如何画出比较器的输出波形。
本文标题:第六章集成运算放大器的应用
链接地址:https://www.777doc.com/doc-2160523 .html