您好,欢迎访问三七文档
1.设01,,,nxxx为n+1个互异的插值节点,01(),(),,()nlxlxlx为Lagrange插值基函数,证明(1)0()1;njjlx(2)0(),1,2,,;nkkjjjxlxxkn(3)0()()0,1,2,,;nkjjjxxlxkn证明:(1)考虑()1fx,利用Lagrange插值余项定理(1)01()()()()()(),(1)!nnnffxLxxxxxxxn显然()()1.nLxfx利用Lagrange基函数插值公式,有000()()()1()()1.nnnnjjjjjjjLxfxlxlxlx证明:(2)考虑()kfxx,1,2,,kn,利用Lagrange插值余项定理(1)01()()()()()(),(1)!nnnffxLxxxxxxxn显然()()knLxfxx利用Lagrange基函数插值公式,有00()()()().nnkknjjjjjjLxfxlxxlxx证明:(3)利用二项式展开定理和(1),(2)的结论000000()()()()()0.nnkknkikikiikiikjjjjjjjjiijikkkxxlxxxlxxxlxxxxxiii2.当1,0,1x时,()fx值分别是0,2,1.求()fx的2次插值多项式.解:首先写出Lagrange基函数120010202110120122021()()(0)(1)(1)(),()()(10)(11)2()()((1))(1)()(1)(1),()()(0(1))(01)()()((1))(0)(1()()()(1(1))(10)xxxxxxxxlxxxxxxxxxxxlxxxxxxxxxxxxxxlxxxxx).2x利用Lagrange插值公式,有20011222()()()()()()()(1)(1)02(1)(1)122312.22lxfxlxfxlxfxlxxxxxxxxx3.已知函数sinx与cosx在0,,,,6432x处的值,利用(1)线性插值求sin12的近似值;(2)2次插值求cos5的近似值,并进行误差估计.解:线性插值,取010,.6xx1036()00.5,0066xxLxx1sin()0.251212L(sin0.258819045)12,1sin()0.2588190450.250.008819045.1212L2次插值,取0120,,.64xxx2()()(0)()(0)()326464()1,22(0)(0)(0)()(0)()64664446xxxxxxLx2cos()0.8098124655L(cos0.809016994)5,2cos()0.8090169940.809812460.00795466.55L利用线性插值的余项估计01''1011()()max()()(),2xxxfxLxfxxxxx得''1061sin()max(sin)(0)()1212212126xLx2110.01644934.22144利用2次插值的余项估计02'''20121()()max()()()(),6xxxfxLxfxxxxxxx得'''2041cos()max(sin)(0)()()55655654xLx3120.001218041.623000实际误差确定在理论误差估计范围内。4.证明k阶差商有下列性质:(1)若()()fxcgx,则0101,,,,,,;nnfxxxcgxxx证明:(1)利用差商和函数值的关系式01'0(),,,,()nknkkfxfxxxx其中01()()()().nxxxxxxx0101''00()(),,,,,,.()()nnkknnkkkkfxcgxfxxxcgxxxxx5.已知64()5231fxxxx.求0162,2,,2f及0172,2,,2f.解:显然(6)(7)()56!,()0fxfx,利用差商和导数的关系式()01(),,,,!nnffxxxn容易计算(6)016()2,2,,25,6!ff(7)017()2,2,,20.7!ff6.已知函数()fx的数据表kx()kfxkx()kfx0.400.410750.800.888110.550.578150.901.026520.650.696751.051.25382利用Newton插值公式计算(0.596)f.解:首先构造差商表0.400.410750.550.578151.116000.650.696751.186000.280000.800.888111.275730.358920.197300.901.026521.384100.433480.213030.031461.051.253821.515330.524920.228600.03114利用Newton插值公式,有4()0.410751.11600(0.40)0.28000(0.40)(0.55)0.19730(0.40)(0.55)(0.65)0.03146(0.40)(0.55)(0.65)(0.80),Nxxxxxxxxxxx4(0.596)(0.596)0.63192.fN7.利用函数()fxx的数据表x2.02.12.22.3()fx1.4142141.4491381.4832401.516575()fx0.3535530.3450330.3371000.329690运用Hermite插值计算(2.15)f,并估计误差.解:若()fxx,则1()2111()(1)(1)222nnfxnx,首先计算Lagrange基函数:0''000(2.1)(2.2)(2.3)(),(2.02.1)(2.02.2)(2.02.3)1555(2.15),(2.0),(2.15).16312xxxlxlll1111''(2.0)(2.2)(2.3)(),(2.12.0)(2.12.2)(2.12.3)945(2.15),(2.1)5,(2.15).164xxxlxlll2222''(2.0)(2.1)(2.3)(),(2.22.0)(2.22.1)(2.22.3)945(2.15),(2.2)5,(2.15).164xxxlxlll3333''(2.0)(2.1)(2.2)(),(2.32.0)(2.32.1)(2.32.2)1555(2.15),(2.3),(2.15).16312xxxlxlll其次计算Hermite基函数:'2000013()12(2.0)(2.0)(),(2.15).512xxllx'21111243()12(2.1)(2.1)(),(2.15).512xxllx'22222243()12(2.2)(2.2)(),(2.15).512xxllx'2333313()12(2.3)(2.3)(),(2.15).512xxllx20002()(2.0)(),(2.15).5120xxlx21112()(2.1)(),(2.15).5120xxlx22222()(2.2)(),(2.15).5120xxlx23333()(2.3)(),(2.15).5120xxlx最后写出Hermite插值函数3'70()()()()(),kkkkkHxfxxfxx3'70(2.15)()(2.15)()(2.15)1.466164185938.kkkkkHfxfx事实上2.151.466287829862,实际误差472.15(2.15)1.2410.RH利用插值余项定理估计误差72.15(2.15)EH(8)2222()(2.152.0)(2.152.1)(2.152.1)(2.152.3)8!f(8)2222132.02.31max()0.150.050.050.152.28810.8!xfx实际误差RE的原因是初始数据的误差掩盖了插值误差.8.求2()fxx在,ab上n等分的分段线性插值函数,并估计误差.解:考虑,,0,1,,,kbahxakhknn当1,kkxxx时2211().kkkkxxxxxxxhh另外,2''(),()2.fxxfx利用等距节点的分段线性插值余项估计,当1,kkxxx时,221211()2()().244kkbaxxxxxxhn此外,2()fxx在,ab上等距节点处的函数值应当具有相应位数的有效数字.9.为了使()sinfxx在0,2上等距节点的分段线性插值函数()x的误差不超过410,应如何确定步长?解:容易计算''()sin,()sin.fxxfxx利用等距节点的分段线性插值余项估计,当1,kkxxx时,''241111sin()(sin)()()110.282kkxxxxxxxxh解得2210.h此外,()sinfxx在0,2上等距节点处的函数值应当具有5位以上有效数字.10.试判断下面的函数是否为3次样条函数:(1)2,0,()sin,0;xxsxxx(2)3320,10,(),01,(1),12;xsxxxxxx(3)3321,10,()221,01.xxxsxxxx解:利用3次样条函数的定义即可验证.(1)sinx不是3次多项式,故()sx不是3次样条函数.(2)'220,10,()3,01,32(1),12;xsxxxxxx''0,10,()6,01,62,12;xsxxxxx''()sx在x=1处不连续,故()sx不是3次样条函数.(3)()sx在1,1上连续,2'232,10,()62,01.xxsxxx'()sx在1,1上连续;''6,10,()12,01.xxsxxx''()sx在1,1上连续,即2()1,1sxC.又()sx在每段上都是3项式,故()sx是3次样条函数.11.构造适合下列数据的3次样条函数()sx,x2.22.42.6()fx0.52078430.51041470.4813306()fx0.00.0计算(2.5)f的近似值.解:注意到问题比较简单,直接利用待定系数法,设231123220.5207843(2.2)(2.2),2.22.4,()0.4813306(2.6)(2.6),2.42.6.axbxxsxaxbxx根据3次样条函数定义,利用()sx在x=2.4的连续性条件得2311232222112211220.5207843(2.42.2)(2.42.2)0.5104147,0.4813306(2.42.6)(2.42.6)0.5104
本文标题:第二章插值方法
链接地址:https://www.777doc.com/doc-2186610 .html