您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 电磁感应的图象与能量问题(含答案)
电磁感应的图象与能量问题一、电磁感应中的电路问题1.相关的几个知识点(1)电源电动势:E=nΔΦΔt或E=Blv.(2)闭合电路欧姆定律:I=ER+r.部分电路欧姆定律:I=UR.电源的内电压:U内=Ir.电源的路端电压:U外=IR=E-Ir.(3)消耗功率:P外=IU,P总=IE.(4)电荷量:q=IΔt=nΔΦR+r.(注意与位移的联系)【例1】.两根光滑的长直金属导轨MN、M′N′平行放置于同一水平面内,导轨间距为l,电阻不计,M、M′处接有如图15所示的电路,电路中各电阻的阻值均为R,电容器的电容为C.长度也为l、阻值也为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向垂直纸面向里的匀强磁场中.ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为x的过程中,整个回路中产生的焦耳热为Q.求:(1)ab运动速度v的大小;(2)电容器所带的电荷量q.(1)4QRB2l2x(2)CQRBlx二、电磁感应中的图象问题1.图象问题可以综合法拉第电磁感应定律、楞次定律或右手定则、安培定则和左手定则,还有与之相关的电路知识和力学知识等.2.对于图象问题,搞清物理量之间的函数关系、变化范围、初始条件、斜率的物理意义等,往往是解题的关键.3.明确图象的种类,即是B-t图象还是Φ-t图象,或者E-t图象、I-t图象等.【例2】如图所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c、d,置于边界水平的匀强磁场上方同一高度h处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c,c刚进入磁场即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触.用ac表示c的加速度,Ekd表示d的动能,xc、xd分别表示c、d相对释放点的位移.下列图中正确的是(BD)三、电磁感应中的动力学问题1.电磁感应与动力学、运动学结合的动态分析,分析方法是:导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态.2.分析动力学问题的步骤(1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向.(2)应用闭合电路欧姆定律求出电路中感应电流的大小.(3)分析研究导体受力情况,特别要注意安培力方向的确定.(4)列出动力学方程或平衡方程求解.【例3】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.(1)见解析(2)BLvRgsinθ-B2L2vmR(3)mgRsinθB2L2四、电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,安培力做多少功就有多少电能转化为其他形式的能.可以简化为下列形式:其他形式的能如:机械能――→安培力做负功电能――→电流做功其他形式的能如:内能2.电能求解的思路主要有三种(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功;(2)利用能量守恒求解:机械能的减少量等于产生的电能;(3)利用电路特征求解:通过电路中所产生的电能来计算.【例4】.如图所示,电阻为R,其他电阻均可忽略,ef是一电阻可不计的水平放置的导体棒,质量为m,棒的两端分别与ab、cd保持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当导体棒ef从静止下滑经一段时间后闭合开关S,则S闭合后()A.导体棒ef的加速度可能大于gB.导体棒ef的加速度一定小于gC.导体棒ef最终速度随S闭合时刻的不同而不同D.导体棒ef的机械能与回路内产生的电能之和一定守恒【例5】如图6所示,两根足够长的平行导轨处在与水平方向成θ=37°角的斜面上,导轨电阻不计,间距L=0.3m,导轨两端各接一个阻值R0=2Ω的电阻;在斜面上加有磁感应强度B=1T、方向垂直于导轨平面的匀强磁场.一质量为m=1kg、电阻r=2Ω的金属棒横跨在平行导轨间,棒与导轨间的动摩擦因数μ=0.5.金属棒以平行于导轨向上、v0=10m/s的初速度上滑,直至上升到最高点的过程中,通过上端电阻的电荷量Δq=0.1C,求上端电阻R0产生的焦耳热Q.(g取10m/s2)5J1.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如下图所示,则在移出过程中线框的一边a、b两点间电势差绝对值分别是2.如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内.在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场.电阻R=0.3Ω、质量m1=0.1kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m2=0.05kg的小环.已知小环以a=6m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10m/s2,sin37°=0.6,cos37°=0.8.求(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率.(1)0.2N(2)2W3.一个圆形闭合线圈固定在垂直纸面的匀强磁场中,线圈平面与磁场方向垂直,如图9甲所示.设垂直于纸面向里的磁感应强度方向为正,垂直于纸面向外的磁感应强度方向为负.线圈中顺时针方向的感应电流为正,逆时针方向的感应电流为负.已知圆形线圈中感应电流I随时间变化的图象如图乙所示,则线圈所处的磁场的磁感应强度随时间变化的图象可能是下图中哪一个(CD)4.如图所示,一有界区域内,存在着磁感应强度大小均为B,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L.边长为L的正方形线框abcd的bc边紧靠磁场边缘置于桌面上.使线框从静止开始沿x轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图(AC)5.)如图所示,在一匀强磁场中有一“”形导体框bacd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可以在ab、cd上无摩擦地滑动,杆ef及线框中导体的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀速向右运动,最后停止C.ef将匀速向右运动D.ef将做往复运动6.如图所示,有两根与水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长.空间有垂直于轨道平面的匀强磁场,磁感应强度为B,一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则()A.如果B增大,vm将变大B.如果α变大,vm将变大C.如果R变大,vm将变大D.如果m变小,vm将变大7如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于()A.棒的机械能增加量B.棒的动能增加量C.棒的重力势能增加量D.电阻R上放出的热量8两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻.将质量为m的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图11所示.除电阻R外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则()A.释放瞬间金属棒的加速度等于重力加速度gB.金属棒向下运动时,流过电阻R的电流方向为a→bC.金属棒的速度为v时,所受的安培力大小为F=B2L2vRD.电阻R上产生的总热量等于金属棒重力势能的减少9.光滑平行的金属导轨MN和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg的金属杆ab垂直导轨放置,如图16甲所示.用恒力F沿导轨平面向上拉金属杆ab,由静止开始运动,v-t图象如图乙所示,g取10m/s2,导轨足够长.求:(1)恒力F的大小;(2)金属杆速度为2.0m/s时的加速度大小;(3)根据v-t图象估算在前0.8s内电阻上产生的热量.(1)18N(2)2.0m/s2(3)4.12J
本文标题:电磁感应的图象与能量问题(含答案)
链接地址:https://www.777doc.com/doc-2258088 .html