您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 点式支承玻璃板变形性能的分析研究
点式支承玻璃板变形性能的分析研究来源:中国幕墙网收集整理作者:李少甫日期:2006-11-7摘要:介绍了玻璃建筑技术中点式带孔玻璃变形的问题通过有限元分析计算,着重讨论孔心边距和玻璃厚度对玻璃板变形性能的影响并与试验结果进行了比较分析。关键词:点式支承带孔玻璃变形近几年,在深圳的地王大厦和上海大剧院等工程中成功地从国外引进了建筑点式连接技术在我国开始了建筑点式技术的研究和应用。我国自行设计、制作和安装的深圳康佳产品展销馆、深圳机场新航站楼、北京国际金融中心多棱多面的锥形采光顶和北京植物园展览温室等数十项相继完工的工程中,均已采用点式玻璃连接技术。点式玻璃建筑是一种新组合式建筑结构形式它用金属连接件和紧固件将建筑玻璃与金属(或玻璃〕支承结构连接成整体。由于点式支承玻璃与《玻璃幕墙工程技术规范》(JG102-96)中有框和隐框玻璃变形特征上有很大不同,而现有规范未能考虑点式支承玻璃的设计特点。因此有必要对点式支承玻璃变形性能及其影响因素进行研究。1、四边简支玻璃板变形计算由于生产工艺的限制,过去的玻璃幕墙在连接上采用四边支承方式。这样的边界条件对于玻璃板的位移控制比较有利由于边缘的约束作用会减少玻璃板中心的位移。它的计算公式:不同厚度情况下,玻璃板刚度D可见文献[1]。式中u为玻璃板跨中最大挠度;a为玻璃板短边长度;t为玻璃厚度,中空玻璃的等效厚度取1.2t,夹层玻璃等效厚度取1.25t;qk为垂直于玻璃平面方向的荷载与地震作用标准值;v为泊松比v=0.22;为跨中最大挠度系数。这个挠度计算公式是小挠度情况下〔u/t1.0时适用〕的,在大挠度情况下、计算值大于实际挠度值、计算偏于安全。2、点式连接玻璃板变形性能分析目前采用较多的点式支承玻璃结构玻璃板由角点处的连接件所连接在玻璃板的四周边缘没有约束四周可以产生较大变形与规范中介绍的情况完全不一样需要对它独特的变形进行研究。目前开发的多种点支玻璃结构,对玻璃板变形影响较大的是以下两个方面:(1)玻璃板和支承点之间的连接情况:随着生产工艺的提高,连接件由最初的单向固定件改成万向括动固定件在孔的边缘约束中释放了两个转动约束并允许玻璃板在圆孔附近有少许位移即孔边缘的平动约束也有所释放从而消除连接所产生的玻璃板薄膜效应,达到减少孔边缘集中应力的效果。球铰支承相比固定支承而言因为支承点约束减小,所以玻璃板变形增大。(2)支承点到板边缘的距离:玻璃在荷载作用下将产生大的变形是平板点支承下的大变形问题。由于玻璃板边缘部分的反翘作用所以玻璃板中的应力和变形相对减少。并且由于支承点的内移所承受的连接处的弯矩作用降低对玻璃孔边缘的应力集中现象也有所帮助。但从生产、加工的角度讲,随着玻璃孔的边距不断增大,用于沛名玻璃与支承结构连接成一个整体的金属连接件和紧固件的自重和成本会显著增大。日决一些专家认为,玻璃孔边缘至玻璃最外边最短距离应等于4倍玻璃厚度中国有些专家认为子地缘至玻璃最近边最短距离为l00mm。所以,为了控制玻璃板的变形理论上认为采用固定连接件和大的孔心边距是较好的措施但从玻璃板的受力和工程的成本上考虑是不可行的。我们的研究工作重点在于既要瞒足玻璃板受力和工程成本的要求,又要适当控制玻璃板的变形力求在两者之间寻找合适的结合点。对于四点支承玻璃板的变形国内一些专家提出的方法中较为著名的是:单层板的厚度t取玻璃实际厚度;夹胶玻璃的等效厚度按表1取用。点支面板的应力和挠度公式见表2。文献[3]给出4点和6点支承玻璃面板计算系数u.m。3、点式连接玻璃变形性能的有限元分析3.1、计算模型我们采用较为常见的沉头式连接方式,其优点在于连接件沉入玻璃表面内,表面平整、美观也不容易积灰污染玻璃表面(见图1)。但玻璃要开锥形孔洞加工复杂而且要求玻璃厚度不小于10mm当受力不需要这么厚的玻璃时不仅增加造价,而且会加大幕墙重量。连接方法中,在螺栓孔中塞入圆孔形的垫圈,螺栓通过垫圈中部的孔并在螺栓和玻璃平面接触的地方布置平垫圈,使得螺栓和玻、璃之间的外力通过垫圈得到缓冲减少应力集中。模型单元类型为三维实体单元,形状类似正四面体,适合用于不规则网格划分。每个单元定义了10个节点,每个节点带3个自由度,包括两个位移自由度和一个转动自由度具有大变形的特性所以在有限元计算中选用。网格划分时控制单元边长在玻璃开孔处缩小控制尺寸获得较高的精确度。为方便计算我们采用1/4对称的处理方法。计算模型中的材料包括玻璃、金属连接件和起缓冲效应的密封垫层。在处理不同材料的接触问题时我们考虑材料整体一起变形接触面受力后不发生脱离这样用ANSYS它是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。还可以通过体单元相互粘结来处理玻璃和连接件的接触问题。目前国内的点式玻璃支承技术中,4点支承形式采用的较为普遍玻璃厚度有8、10、12、15mm。玻璃板的尺寸有1.0mX1.0m-2.5mX2.5m较为普遍的是在2mX2m以内。我们的简化模型采用相同尺寸,荷载值为2.0kN/m2,但考虑孔的影响孔径为36mm。3.2、有限元计算结果在计算中首先分析支承孔心边距对玻璃板变形的影响其中包括正方形玻璃板和长方形玻璃板;然后在合理的孔心边距的基础上,分析相应玻璃板尺寸(平面尺寸和厚度)在一定荷载作用下的变形。对于其它尺寸或者荷载可以通过弹性叠加推导。(1))正方形玻璃板变形随孔心边距的变化(见图2),计算模型共4组,其边长分别为2、1.8、1.s、1.2m,玻璃厚度为10mm。从图2同样可以看出,正方形玻璃板,随着孔心边距的增大,玻璃板中心和板边中心的位移也呈现迅速下降的趋势。(2)长方形玻璃板变形随孔心边距的变化(见图3),计算模型共4组其边长分别为2mX1.8m,2mX1.5m,2mX1.2m只mX1m,玻璃厚度为10mm。从图3同样可以看出,长方形玻璃板,随着孔心边距的增大,玻璃板中心和板边中心的位移也呈现迅速下降的趋势。为了控制玻璃板的变形,同时也需要考虑孔心边距对孔边缘集中应力的影响,我们研究发现,比较合理的孔心边距是100mm。(3)正方形玻璃板变形随玻璃厚度的变化(见图4孔心边距为100~),其边长分别为2、1.8、1.5、1.2舫擒厚詹为6、8、10、12、15mm。从图4中可以看出,正方形玻璃板,随着玻璃板厚度的增大,玻璃板中心和板边中心的位移也呈现迅速下降的趋势。(4)长方形玻璃板变形随玻璃厚度的变化(见图5)孔心边距为l00mm,计算模型共4组,其边长分别为2mXl.8m、2mXl.5m、2mXl.2m、2mX1m破璃厚度为6、8、10、12、15mm。考虑孔的影响,孔径为36mm。从图5同样可以看出,长方形玻璃板,随着玻璃板厚度的增大,玻璃板中心和板边中心的位移也呈现迅速下降的趋势。通过以上计算可以看出:(1)对于目前通用的长方形和正方形玻璃板,随着支承点孔心边距的增大玻璃板中心和玻璃板板边中心的位移减小。这主要是因为孔心边距的不断增大,外围玻璃板受力的反翘作用使得玻璃板中心和玻璃板边缘处的应力减少位移得到控制。(2)当玻璃板的尺寸和玻璃孔心边距相同时,随着玻璃厚度的增大玻璃板中心和边缘中心处的位移不断减小。这是因为厚度的增加便得玻璃板抵抗垂直于平面的弯曲能力加强,从而玻璃板边缘和中心的位移变小。4、点式连接玻璃板变形性能的试验结果比较分析为研究点式玻璃的承载性能我们进行了1:1模型加载试验t9,将试件按bl、b2、b3、b4编号。试验模型采用实际工程的同批试件尺寸为1.260mX0.890m-1.36mX0.9m荷载为均布考虑孔的影响孔径为36mm,厚度为12mm。为了便于比较我们按试件具体尺寸进行相应的有限元计算表3中还列出文献[1]和文献[3]计算公式的计算结果。(1)从表中可以看出,试验结果和有限元计算结果较为吻合误差范围在10%付近。(2}按照文献[1]的计算方法即按四边简支进行计算,则产生很大误差误差大于100%.这种挠度计算公式是按照小挠度情况(u/t1.0}考虑的,在大挠度情况下计算结果偏大,过于安全。(3)劝按照文献[3]的计算方法玻璃板变形的计算结果与试验结果比较接近、在工程中较为适用。(4))有限元计算产生误差的原因:玻璃材料自身材料性质的离散性二玻璃为法国进口玻璃但计算中采用的数据为国内规范规定两者有所不同;试验加载设备的有限性不能完全模拟风压均布荷载。因为点支玻璃试件试验复杂,并且由于计算结果和试验模拟比较好所以我们可以通过有限元计算来判断点式支承玻璃试件的安全性。5、结果分析(1)在点式玻璃廷筑中玻璃板的变形不能直接套用《玻璃幕墙工程技术规范》计算公式,而应该通过较为准确的方法计算点式支承玻璃板的变形。(2)玻璃孔的位置对玻璃板变形能力有较大影响。孔心边距的不断增大使得玻璃板中心和玻璃板边缘处的位移减小。(3)玻璃板的厚度增加同样可以减小玻璃板中心和玻璃板边缘处的位移。参考文献1、陈建东.玻璃幕墙工程技术规范应用手册。北京:中国建筑工业出版社:19962、AndreasKlinkenbeng.untersuchungenzurStatischOptimalenHalterpositionbeiPunktge-StutztenGLastafeln,stahlbau,1998,67(4)3、赵安_点式支撑玻璃幕墙设计_建筑技术:1999(9)4、马国馨_玻璃幕墙点式连接法_世界建筑,1998(2)5、杨威王元清石永久,李少甫_玻璃建筑中带孔点式支承玻璃承载性能研究一工业建筑2000(10)6、邹宇、石永久,王元清,李少甫.玻璃建筑中带金属紧团件玻璃板的承载性能研究_工业建筑,2000(10)7、杨威、王元清、石永久,李少甫.孔边应力状态对点式支承玻璃板承载性能的影响分析.建筑结构2001(6)8、杨威、王元清、石永久,李少甫.沉头式点支承玻璃板承载性能的试验究。钢结构2000(增刊)。
本文标题:点式支承玻璃板变形性能的分析研究
链接地址:https://www.777doc.com/doc-2298848 .html