您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 浅谈奥氏体不锈钢的焊接特点及焊条选1
奥氏体不锈钢的焊接摘要奥氏体不锈钢具有良好的焊接性,目前工业上应用最广,焊接时一般不需要采取特殊的工艺措施,本论文比较详细的分析了奥氏体不锈钢在焊接时产生热裂纹、晶间腐蚀、应力腐蚀开裂、焊接接头的脆化(低温脆化、σ相脆化、熔合线脆断)原因和防治措施,通过焊接特点理论和实践分析,着重介绍了奥氏体不锈钢在焊接不同材料和处于不同工作环境条件时焊条的选用原则方法,只有工艺措施和焊条选用合理,才可以焊接出完美的焊缝。关键词奥氏体不锈钢缺陷产生原因防治措施焊条选用引言不锈钢指耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢,是20世纪初材料领域最伟大的发明之一。不锈钢工业化生产自1912年由克虏伯公司开始至今已有近百年的历史,是一种重要的工程材料,已经被广泛用于各种工业和环境的结构中去。近年来,中国不锈钢的生产和消费迅速的发展,不锈钢的表观消费量由1990年的26万吨增长到2009年近千万吨,成为世界上备受关注的不锈钢第一消费大国。奥氏体不锈钢,含铬大于18%,还含有8%左右的镍及少量钼、钛、氮等元素。综合性能好,可耐多种介质腐蚀。是不锈钢中最为重要的钢类,其生产量和使用量约占不锈钢总量的70%。奥氏体不锈钢的综合焊接性能良好,但在焊接过程中由于设备、材料、工艺、及操作等原因,会形成一定的焊接缺陷,使焊件质量达不到要求,影响工作质量及使用寿命。不锈钢在航空、石油、化工和原子能等工业中得到日益广泛的应用,不锈钢按化学成分分为铬不锈钢、铬镍不锈钢,按组织分为铁素体不锈钢、马氏体不锈钢、奥氏体不锈钢和奥氏体-铁素体双相不锈钢。在不锈钢中,奥氏体不锈钢(18-8型不锈钢)比其他不锈钢具有更优良的耐腐蚀性;强度较低,而塑性、韧性极好;焊接性能良好,其主要用作化工容器、设备和零件等,它是目前工业上应用最广的不锈钢。虽然奥氏体不锈钢有诸多优点但是若焊接工艺不正确或焊接材料选用不当,会产生很多缺陷,最终影响使用性能。一.焊接成型特点焊接是通过加热或加压,或者两者并用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法,其实质是使两个分离金属通过原子或分子间的相互扩散与结合而形成一个不可拆卸的整体的过程。其特点包括:1.减轻了结构重量,节省金属材料与工时。在金属结构制造当中,用焊接代替传统的连接方法铆接,一般可节省金属材料的15%~20%,由于节省了材料,因此可减轻自重。2.能化大为小,拼小成大,降低生产成本。在制造大型结构或复杂的及其零部件时,可以用化大为小,化复杂为简单的办法来准备坯料,然后用逐次装配焊接的方法拼小成大3.可制造双金属结构。采用焊接方法可对不同材料零件进行对焊、摩擦焊等,还可制造复合层容器,从而满足高温、高压设备、化工设备和切削刀具等的特殊性能要求,节省贵重金属材料。4.焊接接头组织性能不均匀。焊接的过程其实是一个不均匀的加热和冷却的过程,焊接接头组织性能的不均匀程度大大超过了铸件和锻件,从而影响焊接结构的精度和承载能力。此外,焊接形成的焊缝具有良好密封性的优点,还具有不能拆卸、不便于更换零部件等的缺点。2.奥氏体不锈钢的焊接性金属材料的焊接性,是指金属材料对焊接加工的适应性,主要指在一定的焊接工艺条件下,获得优质焊接接头的难易程度。它与金属铸造性、机械加工性一样,同属于金属材料的工艺性能。金属材料的焊接性不仅取决于金属本身的成分与组织,同时与焊接的热作用直接相关。焊接性并不是金属材料的固有性能,而是随焊接技术的发展而变化的。金属材料的焊接性可分为工艺焊接性和使用焊接性:(1)工艺焊接性是指金属材料对各种焊接方法的适应能力。它不仅取决于金属本身的成分与性能,而且与焊接热源的性质、保护方式、预热及后热等工艺措施有关。(2)使用焊接性是指焊接接头或整体结构,满足技术条件中所规定的使用性能的能力。显然,使用焊接性与产品的工作条件有密切关系。奥氏体不锈钢的焊接性工艺焊接性方面,很容易获得无缺陷的焊接接头,也不需要采用特殊的工艺措施即结合性能良好。使用焊接性方面,如果处在腐蚀的介质中,焊接接头常常沿晶界被腐蚀,即使用性能不好。奥氏体不锈钢由于具有较高的变形能力并不可淬硬,所以总的来说焊接性能良好。二、奥氏体不锈钢的焊接特点(一)容易出现热裂纹奥氏体不锈钢在焊接时热裂纹是比较容易产生的缺陷,包括焊缝的纵向和横向裂纹、火口裂纹、打底焊的根部裂纹和多层焊的层间裂纹等,特别是含镍量较高的奥氏体不锈钢更容易产生。1.产生原因(1)奥氏体不锈钢的液、固相线的区间较大,结晶时间较长,且单相奥氏体结晶方向性强,所以杂质偏析比较严重。(2)导热系数小,线膨胀系数大,焊接时会产生较大的焊接内应力(一般是焊缝和热影响区受拉应力)。(3)奥氏体不锈钢中的成分如C、S、P、Ni等,会在熔池中形成低熔点共晶。例如,S与Ni形成的Ni3S2熔点为645℃,而Ni-Ni3S2共晶体的熔点只有625℃。2.防止措施(1)采用双相组织的焊缝尽量使焊缝金属呈奥氏体和铁素体双相组织,铁素体的含量控制在3~5%以下,可扰乱奥氏体柱状晶的方向,细化晶粒。并且铁素体可以比奥氏体溶解更多的杂质,从而减少了低熔点共晶物在奥氏体晶界的偏析。(2)焊接工艺措施在焊接工艺上尽量选用碱性药皮的优质焊条、采用小线能量,小电流、快速不摆动焊,收尾时尽量填满弧坑及采用氩弧焊打底等,可减小焊接应力和弧坑裂。(3)控制化学成分严格限制焊缝中S、P等杂质含量,以减少低熔点共晶。(二)晶间腐蚀产生在晶粒之间的腐蚀,其导致晶粒间的结合力丧失,强度几乎完全消失,当受到应力作用时,即会沿晶界断裂。1.产生原因根据贫铬理论,焊缝和热影响区在加热到450~850℃敏化温度(危险温度区)时,由于Cr原子半径较大,扩散速度较小,过饱和的碳向奥氏体晶粒边界扩散,并与晶界的铬化合物在晶界形成Cr23C6,造成贫铬的晶界,不足以抵抗腐蚀的程度。2.防止措施(1)控制含碳量采用低碳或超低碳(W(C)≤0.03%)不锈钢焊接焊材。如A002等。(2)添加稳定剂在钢材和焊接材料中加入Ti、Nb等与C亲和力比Cr强的元素,能够与C结合成稳定碳化物,从而避免在奥氏体晶界造成贫铬。常用的不锈钢材和焊接材料都含有Ti、Nb,如1Cr18Ni9Ti、1Cr18Ni12MO2Ti钢材、E347-15焊条、H0Cr19Ni9Ti焊丝等。(3)采用双向组织由焊丝或焊条向焊缝中熔入一定量的铁素体形成元素,如Cr、Si、AL、MO等,以使焊缝形成为奥氏体+铁素体的双相组织,因为Cr在铁素体内扩散速度比在奥氏体中快,因此Cr在铁素体内较快的向晶界扩散,减轻了奥氏体晶界的贫铬现象。一般控制焊缝金属中铁素体含量为5%~10%,如铁素体过多,会使焊缝变脆。(4)快速冷却因为奥氏体不锈钢不会产生淬硬现象,所以在焊接过程中,可以设法增加焊接接头的冷却速度,如焊件下面用铜垫板或直接浇水冷却。在焊接工艺上,可以采用小电流、大焊速、短弧、多道焊等措施,缩短焊接接头在危险温度区停留的时间,以免形成贫铬区。(5)进行固溶处理或均匀化热处理焊后把焊接接头加热到1050~1100℃,使碳化物又重新溶解到奥氏体中,然后迅速冷却,形成稳定的单相奥氏体组织。另外,也可以进行850~900℃保温2h的均匀化热处理,此时奥氏体晶粒内部的Cr扩散到晶界,晶界处Cr量又重新达到了大于12%,这样就不会产生晶间腐蚀了。(三)应力腐蚀开裂金属在应力和腐蚀性介质共同作用下,发生的腐蚀破坏。根据不锈钢设备与制件的应力腐蚀断裂事例和试验研究,可以认为:在一定静拉伸应力和在一定温度条件下的特定电化学介质共同作用下,现有的不锈钢均有产生应力腐蚀的可能。应力腐蚀最大特点之一是腐蚀介质与材料的组合上有选择性。容易引起奥氏体不锈钢应力腐蚀主要是盐酸和氯化物含有氯离子的介质,还有硫酸、硝酸、氢氧化物(碱)、海水、水蒸气、H2S水溶液、浓NaHCO3+NH3+NaCl水溶液等介质等。1.产生原因应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。2.防止措施(1)合理制定成形加工和组装工艺尽可能减小冷作变形度,避免强制组装,防止组装过程中造成各种伤痕(各种组装伤痕及电弧灼痕都会成为SCC的裂源,易造成腐蚀坑。(2)合理选择焊材焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体。(3)采取合适的焊接工艺保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等采取合理的焊接顺序,降低焊接残余应力水平。例如,避免十字交叉焊缝,Y形坡口改为X形坡口、适当减小坡口角度、采用短焊焊道、采用小线能量。(4)消除应力处理焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。(5)生产管理措施介质中杂质的控制,如液氨介质中的O2、N2、H2O等、液化石油气中的H2S、氯化物溶液中的O2、Fe3+、Cr6+等、防蚀处理:如涂层、衬里或阴极保护等、添加缓蚀剂。(四)焊接接头的脆化奥氏体不锈钢的焊缝在高温加热一段时间后,就会出现冲击韧度下降的现象,称为脆化。1.焊缝金属的低温脆化(475℃脆化)(1)产生原因含有较多铁素体的相(超过15%~20%)的双相焊缝组织,经过350~500℃加热后,塑性和韧性会显著下降,由于475℃时脆化速度最快,故称为475℃脆化。对于奥氏体不锈钢焊接接头,耐蚀性或抗氧化性并不总是最为关键的性能,在低温使用时,焊缝金属的塑韧性就成为关键性能。为了满足低温韧性的要求,焊缝组织通常希望获得单一的奥氏体组织,避免δ铁素体的存在。δ铁素体的存在,总是恶化低温韧性,而且含量越多,这种脆化越严重。(2)防治措施①在保证焊缝金属抗裂性能和抗腐蚀性能的前提下,应将铁素体相控制在较低的水平,约5%左右。②已产生475℃脆化的焊缝,可经900℃淬火消除。2.焊接接头的σ相脆化(1)产生原因奥氏体不锈钢焊接接头在375~875℃温度范围内长期使用,会产生一种FeCr间化合物,称为σ相。σ相硬而脆(HRC68)。由于σ相析出的结果,使焊缝冲击韧度急剧下降,这种现象称为σ相脆化。σ相一般仅在双相组织焊缝内出现;当使用温度超过800~850℃时,在单相奥氏体焊缝中也会析出σ相。(2)防止措施①限制焊缝金属中的铁素体含量(小于15%);采用超合金化焊接材料,即高镍焊材,并严格控制Cr、Mo、Ti、Nb等元素的含量。②采用小规范,以减小焊缝金属在高温下的停留时间。③对已析出的σ相在条件允许时进行固溶处理,使σ相溶入奥氏体。④把焊接接头加热到1000~1050℃,然后快速冷却。σ相一般在1Cr18Ni9Ti钢中一般不产生。3.熔合线脆断(1)产生原因奥氏体不锈钢在高温下长期使用,在沿熔合线外几个晶粒的地方,会发生脆断现象。(2)防治措施在钢中加入Mo能提高钢材抗高温脆断的能力。通过以上的分析,只有合理选择以上的焊接工艺措施或焊接材料都可以避免以上焊接缺陷的产生。奥氏体不锈钢具有优良的焊接性,几乎所有的焊接方法都可用于奥氏体不锈钢的焊接。在各种焊接方法中焊条电弧焊具有适应各种位置与不同板厚的优点、应用非常广泛。下面着重分析一下奥氏体不锈钢焊条在不同用途下的选用原则和方法。三、奥氏体不锈钢的焊接工艺1.1常用焊接接头形式1.2随着不锈钢板厚度的增加,应采用夹角小于60°的V形坡口或U形坡口。1.2常用奥氏体不锈钢焊条及焊丝选择序号旧牌号(GB)新牌号(GB)美标电焊条牌号氩弧焊丝10Cr18Ni906Cr19Ni10304A102H0Cr21Ni10200Cr19Ni10022Cr19Ni10304LA002H00Cr21Ni1030Cr17Ni12Mo206Cr17Ni12Mo2316A202H0Cr18Ni14MO2400Cr17Ni14Mo2022Cr17Ni12Mo2316LA022H00Cr19Ni12MO250Cr18Ni10Ti06Cr18Ni11Ti321A132H0Cr21Ni10Ti1.3手工焊接焊接电流焊条直径/㎜平均焊接电流/A最高电弧电压/
本文标题:浅谈奥氏体不锈钢的焊接特点及焊条选1
链接地址:https://www.777doc.com/doc-2314555 .html