您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 江西省赣州市2014-2015学年高二数学下学期期末试卷理(含解析)
文档来源:弘毅教育园丁网数学第一站学年高二下学期期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每一小题的四个选项中,只有一项是符合题目要求的,答案填写在答题卷上.1.(5分)已知i为虚数单位,(2+i)z=1+2i,则z的共轭复数=()A.+iB.﹣iC.+iD.﹣i2.(5分)用数学归纳法证明某命题时,左式为+cosα+cos3α+…+cos(2n﹣1)α(α≠kπ,k∈Z,n∈N*)在验证n=1时,左边所得的代数式为()A.B.+cosαC.+cosα+cos3αD.+cosα+cos3α+cos5α3.(5分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如表:喜爱打篮球不喜爱打篮球合计男生251035女生51015合计302050根据表中的数据你认为喜爱打篮球与性别之间有关系的把握是()参考数据:.临界值表:P(Χ2≥k)0.1000.0500.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828A.97.5%B.99%C.99.5%D.99.9%4.(5分)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a﹣3)=P(ξ>a+2),则a的值为()A.B.C.5D.35.(5分)一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ等于()A.0.2B.0.8C.0.196D.0.8046.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()文档来源:弘毅教育园丁网数学第一站.B.4C.D.67.(5分)从0,1,2,3,4,5共6个数中任取三个组成的无重复数字的三位数,其中能被5整除的有()A.40个B.36个C.28个D.60个8.(5分)由抛物线y2=4x与直线y=x﹣3围成的平面图形的面积为()A.B.C.64D.329.(5分)设,那么的值为()A.﹣B.﹣C.﹣D.﹣110.(5分)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=()A.﹣eB.﹣1C.1D.e11.(5分)将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b.则使不等式a﹣2b+10>0成立的事件发生的概率等于()A.B.C.D.12.(5分)下列命题中①若f′(x0)=0,则函数y=f(x)在x=x0取得极值;②直线5x﹣2y+1=0与函数f(x)=sin(2x+)的图象不相切;③若z∈C(C为复数集),且|z+2﹣2i|=1,则|z﹣2﹣2i|的最小值是3;④定积分dx=4π.正确的有()A.①④B.③④C.②④D.②③④二、填空题:本大题共有4小题,每小题5分,共20分,答案填写在答题卷上.13.(5分)复数在复平面中的第象限.14.(5分)有5名数学实习老师,现将他们分配到2014-2015学年高二年级的三个班实习,每班至少1名,最多2名,则不同的分配方案有种(用数字作答).文档来源:弘毅教育园丁网数学第一站.(5分)如图所示,EFGH是以O为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则P(B|A)=.16.(5分)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=lnx﹣ax(a>),当x∈(﹣2,0)时,f(x)的最小值为1,则a的值等于.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.18.(12分)已知函数f(x)=x3+x﹣16.(1)求曲线y=f(x)在点(2,6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.19.(12分)给出四个等式:1=1;1﹣4=﹣(1+2);1﹣4+9=1+2+3;1﹣4+9﹣16=﹣(1+2+3+4)….猜测第n(n∈N*)个等式,并用数学归纳法证明.20.(12分)某同学参加高校自主招生3门课程的考试.假设该同学第一门课程取得优秀成绩的概率,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123pxy(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;(Ⅱ)求该生取得优秀成绩课程门数的数学期望Eξ.文档来源:弘毅教育园丁网数学第一站.(12分)班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.(Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?(Ⅱ)若这8位同学的数学、物理分数对应如下表:学生编号12345678数学分数x6065707580859095物理分数y7277808488909395根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数;回归直线的方程是:=bx+a.其中对应的回归估计值b=,a=﹣b;参考数据:=77.5,=85,(x1﹣)2≈1050,(y1﹣)2≈456;(x1﹣)(y1﹣)≈688,≈32.4,≈21.4,≈23.5.22.(12分)已知函数f(x)=x2﹣alnx+(a∈R)(Ⅰ)求函数f(x)单调区间;(Ⅱ)若a=﹣1,求证:当x>1时,f(x)<x3.江西省赣州市2014-2015学年高二下学期期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每一小题的四个选项中,只有一项是符合题目要求的,答案填写在答题卷上.1.(5分)已知i为虚数单位,(2+i)z=1+2i,则z的共轭复数=()A.+iB.﹣iC.+iD.﹣i文档来源:弘毅教育园丁网数学第一站考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的除法运算法则化简求解即可.解答:解:i为虚数单位,(2+i)z=1+2i,可得z===+i.z的共轭复数=﹣i.故选:B.点评:本题考查复数的代数形式的混合运算,复数的定义,基本知识的考查.2.(5分)用数学归纳法证明某命题时,左式为+cosα+cos3α+…+cos(2n﹣1)α(α≠kπ,k∈Z,n∈N*)在验证n=1时,左边所得的代数式为()A.B.+cosαC.+cosα+cos3αD.+cosα+cos3α+cos5α考点:数学归纳法.专题:点列、递归数列与数学归纳法.分析:在验证n=1时,令左边n=1可得:所得的代数式为:.解答:解:由于左式为+cosα+cos3α+…+cos(2n﹣1)α(α≠kπ,k∈Z,n∈N*),因此在验证n=1时,左边所得的代数式为:.故选:B.点评:本题考查了数学归纳法的应用,考查了推理能力,属于基础题.3.(5分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如表:喜爱打篮球不喜爱打篮球合计男生251035女生51015合计302050根据表中的数据你认为喜爱打篮球与性别之间有关系的把握是()参考数据:.临界值表:P(Χ2≥k)0.1000.0500.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828文档来源:弘毅教育园丁网数学第一站.97.5%B.99%C.99.5%D.99.9%考点:线性回归方程.分析:根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,得到结论.解答:解:根据所给的列联表,得到Χ2=≈6.349>5.024,对照临界值表可知有97.5%的把握认为喜爱打篮球与性别有关.故选:A.点评:本题考查独立性检验的应用,考查根据列联表做出观测值,根据所给的临界值表进行比较,本题是一个基础题.4.(5分)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a﹣3)=P(ξ>a+2),则a的值为()A.B.C.5D.3考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:根据随机变量符合正态分布,又知正态曲线关于x=3对称,得到两个概率相等的区间关于x=3对称,得到关于a的方程,解方程即可.解答:解:∵随机变量ξ服从正态分布N(3,4),∵P(ξ<2a﹣3)=P(ξ>a+2),∴2a﹣3与a+2关于x=3对称,∴2a﹣3+a+2=6,∴3a=7,∴a=,故选A.点评:本题考查正态分布曲线的特点及曲线所表示的意义,本题主要考查曲线关于x=3对称,考查关于直线对称的点的特点,本题是一个基础题,若出现是一个得分题目.5.(5分)一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ等于()A.0.2B.0.8C.0.196D.0.804考点:离散型随机变量的期望与方差.分析:把每个牛是否得病作为一个实验,牛发病的概率是0.02,且牛是否发病相互之间没有影响,得到发病的牛的头数为ξ服从二项分布,根据方差的公式Dξ=npq,得到结果.解答:解:∵由题意知该病的发病率为0.02,且每次实验结果都是相互独立的,∴ξ~B(10,0.02),∴由二项分布的方差公式得到Dξ=10×0.02×0.98=0.196.文档来源:弘毅教育园丁网数学第一站点评:解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单得多.6.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4C.D.6考点:定积分在求面积中的应用.专题:计算题.分析:利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.解答:解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.点评:本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题.7.(5分)从0,1,2,3,4,5共6个数中任取三个组成的无重复数字的三位数,其中能被5整除的有()A.40个B.36个C.28个D.60个考点:排列、组合及简单计数问题.专题:排列组合.分析:由题意知能被5整除的三位数末位必为0或5.当末位是0时,没有问题,但当末位是5时,注意0不能放在第一位,所以要分类解决,①末位为0的三位数其首次两位从1~5的5个数中任取2个排列②末位为5的三位数,首位从非0,5的4个数中选1个,再挑十位,相加得到结果.文档来源:弘毅教育园丁网数学第一站w
本文标题:江西省赣州市2014-2015学年高二数学下学期期末试卷理(含解析)
链接地址:https://www.777doc.com/doc-2337325 .html