您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 抽象函数的类型与解法
抽象函数的类型与解法广州市黄埔区教育局教研室曾辛金1.正比例函数型的抽象函数f(x)=kx(k≠0)---------------f(x±y)=f(x)±f(y)例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x0时,f(x)0,f(-1)=-2求f(x)在区间[-2,1]上的值域.分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根据区间求其值域.例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x0时,f(x)2,f(3)=5,求不等式f(a2-2a-2)3的解.分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;最后脱去函数符号.2.幂函数型的抽象函数f(x)=xa----------------f(xy)=f(x)f(y);f(yx)=)()(yfxf例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1].(1)判断f(x)的奇偶性;(2)判断f(x)在[0,+∞]上的单调性,并给出证明;(3)若a≥0且f(a+1)≤39,求a的取值范围.分析:(1)令y=-1;(2)利用f(x1)=f(21xx·x2)=f(21xx)f(x2);(3)0≤a≤2.3.指数函数型的抽象函数f(x)=ax-------------------f(x+y)=f(x)f(y);f(x-y)=)()(yfxf例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求:(1)f(0);(2)对任意值x,判断f(x)值的符号.分析:(1)令y=0;(2)令y=x≠0.例5是否存在函数f(x),使下列三个条件:①f(x)0,x∈N;②f(a+b)=f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.分析:先猜出f(x)=2x;再用数学归纳法证明.3.对数函数型的抽象函数f(x)=logax(a0且a≠1)-----f(x·y)=f(x)+f(y);f(yx)=f(x)-f(y)例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值范围.分析:(1)利用3=1×3;(2)利用函数的单调性和已知关系式.例7设函数y=f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由.分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,进而m+n=f(a)+f(b)=f(ab)=f[g(m)g(n)]….4.三角函数型的抽象函数f(x)=tgx--------------------------f(x+y)=)()(1)()(yfxfyfxff(x)=cotx------------------------f(x+y)=)()(1)()(yfxfyfxf例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件:①x1、x2是定义域中的数时,有f(x1-x2)=)()(1)()(1221xfxfxfxf;②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇偶性如何?说明理由;(2)在(0,4a)上,f(x)的单调性如何?说明理由.分析:(1)利用f[-(x1-x2)]=-f[(x1-x2)],判定f(x)是奇函数;(3)先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数.对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y),(1)求证:f(1)=f(-1)=0;(2)求证:f(x)为偶函数;(3)若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x-21)≤0.分析:函数模型为:f(x)=loga|x|(a>0)(1)先令x=y=1,再令x=y=-1;(2)令y=-1;(3)由f(x)为偶函数,则f(x)=f(|x|).例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证:(1)当x>0时,0<f(x)<1;(2)f(x)在x∈R上是减函数.分析:(1)先令x=y=0得f(0)=1,再令y=-x;(3)受指数函数单调性的启发:由f(x+y)=f(x)f(y)可得f(x-y)=)()(yfxf,进而由x1<x2,有)()(21xfxf=f(x1-x2)>1.总之,因为抽象函数与函数的单调性、奇偶性等众多性质联系紧密,加上本身的抽象性、多变性,所以问题类型众多,解题方法复杂多变.尽管如此,以特殊模型代替抽象函数帮助解题或理解题意,是一种行之有效的教学方法,它能解决中学数学中大多数抽象函数问题.这样做符合学生的年龄特征和认知水平,学生不仅便于理解和接受,感到实在可靠,而且能使学生展开丰富的想象,以解决另外的抽象函数问题.练习题:1.已知:f(x+y)=f(x)+f(y)对任意实数x、y都成立,则()(A)f(0)=0(B)f(0)=1(C)f(0)=0或1(D)以上都不对2.若对任意实数x、y总有f(xy)=f(x)+f(y),则下列各式中错误的是()(A)f(1)=0(B)f(x1)=f(x)(C)f(yx)=f(x)-f(y)(D)f(xn)=nf(x)(n∈N)3.已知函数f(x)对一切实数x、y满足:f(0)≠0,f(x+y)=f(x)f(y),且当x<0时,f(x)>1,则当x>0时,f(x)的取值范围是()(A)(1,+∞)(B)(-∞,1)(C)(0,1)(D)(-1,+∞)4.函数f(x)定义域关于原点对称,且对定义域内不同的x1、x2都有f(x1-x2)=)()(1)()(2121xfxfxfxf,则f(x)为()(A)奇函数非偶函数(B)偶函数非奇函数(C)既是奇函数又是偶函数(D)非奇非偶函数5.已知不恒为零的函数f(x)对任意实数x、y满足f(x+y)+f(x-y)=2[f(x)+f(y)],则函数f(x)是()(A)奇函数非偶函数(B)偶函数非奇函数(C)既是奇函数又是偶函数(D)非奇非偶函数参考答案:1.A2.B3.C4.A5.B
本文标题:抽象函数的类型与解法
链接地址:https://www.777doc.com/doc-2373482 .html