您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 交通运输 > 工程力学竞赛复习题及答案
16.画出杆AB的受力图。17.画出杆AB的受力图。18.画出杆AB的受力图。25.画出杆AB的受力图。物系受力图26.画出图示物体系中杆AB、轮C、整体的受力图。7.图示圆柱A重力为G,在中心上系有两绳AB和AC,绳子分别绕过光滑的滑轮B和C,并分别悬挂重力为G1和G2的物体,设G2>G1。试求平衡时的α角和水平面D对圆柱的约束力。解(1)取圆柱A画受力图如图所示。AB、AC绳子拉力大小分别等于G1,G2。(2)建直角坐标系,列平衡方程:∑Fx=0,-G1+G2cosα=0∑Fy=0,FN+G2sinα-G=0(3)求解未知量。8.图示翻罐笼由滚轮A,B支承,已知翻罐笼连同煤车共重G=3kN,α=30°,β=45°,求滚轮A,B所受到的压力FNA,FNB。有人认为FNA=Gcosα,FNB=Gcosβ,对不对,为什么?解(1)取翻罐笼画受力图如图所示。(2)建直角坐标系,列平衡方程:∑Fx=0,FNAsinα-FNBsinβ=0∑Fy=0,FNAcosα+FNBcosβ-G=0(3)求解未知量与讨论。将已知条件G=3kN,α=30°,β=45°分别代入平衡方程,解得:FNA=2.2kNFNA=1.55kN有人认为FNA=Gcosα,FNB=Gcosβ是不正确的,只有在α=β=45°的情况下才正确。9.图示简易起重机用钢丝绳吊起重力G=2kN的重物,不计杆件自重、摩擦及滑轮大小,A,B,C三处简化为铰链连接;求AB和AC所受的力。解(1)取滑轮画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系如图,列平衡方程:∑Fx=0,-FAB-Fsin45°+Fcos60°=0∑Fy=0,-FAC-Fsin60°-Fcos45°=0(3)求解未知量。将已知条件F=G=2kN代入平衡方程,解得:FAB=-0.414kN(压)FAC=-3.15kN(压)10.图示简易起重机用钢丝绳吊起重力G=2kN的重物,不计杆件自重、摩擦及滑轮大小,A,B,C三处简化为铰链连接;求AB和AC所受的力。解:(1)取滑轮画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系如图,列平衡方程:∑Fx=0,-FAB-FACcos45°-Fsin30°=0∑Fy=0,-FACsin45°-Fcos30°-F=0(3)求解未知量。将已知条件F=G=2kN代入平衡方程,解得:FAB=2.73kN(拉)FAC=-5.28kN(压)24.试求图示梁的支座反力。已知F=6kN,M=2kN·m,a=1m。解(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程:∑Fx=0,FA-FBx=0∑Fy=0,FBy-F=0∑MB(F)=0,-FA×a+F×a+M=0(3)求解未知量。将已知条件F=6kN,M=2kN·m,a=1m代入平衡方程,解得:FA=8kN(→);FBx=8kN(←);FBy=6kN(↑)。27.试求图示梁的支座反力。已知F=6kN,q=2kN/m,M=2kN·m,a=1m。解:求解顺序:先解CD部分再解ABC部分。解CD部分(1)取梁CD画受力图如上左图所示。(2)建直角坐标系,列平衡方程:∑Fy=0,FC-q×a+FD=0∑MC(F)=0,-q×a×0.5a+FD×a=0(3)求解未知量。将已知条件q=2kN/m,a=1m代入平衡方程。解得:FC=1kN;FD=1kN(↑)解ABC部分(1)取梁ABC画受力图如上右图所示。(2)建直角坐标系,列平衡方程:∑Fy=0,-F/C+FA+FB-F=0∑MA(F)=0,-F/C×2a+FB×a-F×a-M=0(3)求解未知量。将已知条件F=6kN,M=2kN·m,a=1m,F/C=FC=1kN代入平衡方程。解得:FB=10kN(↑);FA=-3kN(↓)梁支座A,B,D的反力为:FA=-3kN(↓);FB=10kN(↑);FD=1kN(↑)。32.图示汽车起重机车体重力G1=26kN,吊臂重力G2=4.5kN,起重机旋转和固定部分重力G3=31kN。设吊臂在起重机对称面内,试求汽车的最大起重量G。解:(1)取汽车起重机画受力图如图所示。当汽车起吊最大重量G时,处于临界平衡,FNA=0。(2)建直角坐标系,列平衡方程:∑MB(F)=0,-G2×2.5m+Gmax×5.5m+G1×2m=0(3)求解未知量。将已知条件G1=26kN,G2=4.5kN代入平衡方程,解得:Gmax=7.41kN33.汽车地秤如图所示,BCE为整体台面,杠杆AOB可绕O轴转动,B,C,D三点均为光滑铰链连接,已知砝码重G1,尺寸l,a。不计其他构件自重,试求汽车自重G2。解:(1)分别取BCE和AOB画受力图如图所示。(2)建直角坐标系,列平衡方程:对BCE列∑Fy=0,FBy-G2=0对AOB列∑MO(F)=0,-F/By×a+F×l=0(3)求解未知量。将已知条件FBy=F/By,F=G1代入平衡方程,解得:G2=lG1/a3.拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。解:(1)计算A端支座反力。由整体受力图建立平衡方程:∑Fx=0,2kN-4kN+6kN-FA=0FA=4kN(←)(2)分段计算轴力杆件分为3段。用截面法取图示研究对象画受力图如图,列平衡方程分别求得:FN1=-2kN(压);FN2=2kN(拉);FN3=-4kN(压)(3)画轴力图。根据所求轴力画出轴力图如图所示。4.拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。解:(1)分段计算轴力杆件分为3段。用截面法取图示研究对象画受力图如图,列平衡方程分别求得:FN1=-5kN(压);FN2=10kN(拉);FN3=-10kN(压)(2)画轴力图。根据所求轴力画出轴力图如图所示。7.圆截面阶梯状杆件如图所示,受到F=150kN的轴向拉力作用。已知中间部分的直径d1=30mm,两端部分直径为d2=50mm,整个杆件长度l=250mm,中间部分杆件长度l1=150mm,E=200GPa。试求:1)各部分横截面上的正应力σ;2)整个杆件的总伸长量。10.某悬臂吊车如图所示。最大起重荷载G=20kN,杆BC为Q235A圆钢,许用应力[σ]=120MPa。试按图示位置设计BC杆的直径d。1.图示切料装置用刀刃把切料模中Ф12mm的料棒切断。料棒的抗剪强度τb=320MPa。试计算切断力。2.图示螺栓受拉力F作用。已知材料的许用切应力[τ]和许用拉应力[σ]的关系为[τ]=0.6[σ]。试求螺栓直径d与螺栓头高度h的合理比例。3.已知螺栓的许用切应力[τ]=100MPa,钢板的许用拉应力[σ]=160MPa。试计算图示焊接板的许用荷载[F]。6.阶梯轴AB如图所示,AC段直径d1=40mm,CB段直径d2=70mm,外力偶矩MB=1500N·m,MA=600N·m,MC=900N·m,G=80GPa,[τ]=60MPa,[φ/]=2(º)/m。试校核该轴的强度和刚度。7.图示圆轴AB所受的外力偶矩Me1=800N·m,Me2=1200N·m,Me3=400N·m,G=80GPa,l2=2l1=600mm[τ]=50MPa,[φ/]=0.25(º)/m。试设计轴的直径。8.直径d=25mm的圆钢杆,受轴向拉力F=60kN作用时,在标矩l=200mm的长度内伸长Δl=0.113mm;受外力偶矩Me=200N·m,的作用时,相距l=150mm的两横截面上的相对转角为φ=0.55º。试求钢材的E和G。8.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出FS,max和Mmax。设q,F,l均为已知。9.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出FS,max和Mmax。设q,l均为已知。10.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出FS,max和Mmax。设q,l,F,Me均为已知。11.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出FS,max和Mmax。解:(1)由静力平衡方程得:FA=F,MA=Fa,方向如图所示。(2)利用M,FS,q之间的关系分段作剪力图和弯矩图。(3)梁最大绝对值剪力在AB段内截面,大小为2F。梁最大绝对值弯矩在C截面,大小为2Fa。12.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出FS,max和Mmax。解:(1)由静力平衡方程得:FA=3ql/8(↑),FB=ql/8(↑)。(2)利用M,FS,q之间的关系分段作剪力图和弯矩图。(3)梁的最大绝对值剪力在A右截面,大小为3ql/8。梁的最大弯矩绝对值在距A端3l/8处截面,大小为9ql2/128。13.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出FS,max和Mmax。解:(1)由静力平衡方程得:FB=2qa,MB=qa2,方向如图所示。(2)利用M,FS,q之间的关系分段作剪力图和弯矩图。(3)梁的最大绝对值剪力在B左截面,大小为2qa。梁的最大绝对值弯矩在距AC段内和B左截面,大小为qa2。15.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出FS,max和Mmax。解:(1)由静力平衡方程得:FA=9qa/4(↑),FB=3qa/4(↑)。(2)利用M,FS,q之间的关系分段作剪力图和弯矩图。(3)梁最大绝对值剪力在A右截面,大小为5qa/4。梁最大弯矩绝对值在A截面,大小为qa2/2。7.空心管梁受载如图所示。已知[σ]=150MPa,管外径D=60mm,在保证安全的条件下,求内经d的最大值。8.铸铁梁的荷载及横截面尺寸如图所示,已知Iz=7.63×10-6m4,[σt]=30MPa,[σc]=60MPa,试校核此梁的强度。9.简支梁受载如图所示,已知F=10kN,q=10kN/m,l=4m,a=1m,[σ]=160MPa。试设计正方形截面和矩形截面(h=2b),并比较它们截面面积的大小。14.一单梁桥式行车如图所示。梁为№28b号工字钢制成,电动葫芦和起重重量总重F=30kN,材料的[σ]=140MPa,[τ]=100MPa。试校核梁的强度。
本文标题:工程力学竞赛复习题及答案
链接地址:https://www.777doc.com/doc-2443788 .html