您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 小学奥数教案图形与面积
小学奥数教案图形与面积一本讲学习目标掌握通过面积公式及其变换解决图形面积问题二重点难点考点分析小学课堂中出现的面积计算多是用特殊图形(正方形、长方形、平行四边行、图形、三角形等)面积公式来解决(这些公式在以前的讲义中已经给大家做了总结),由此可见面积公式是解决问题的基础工具,但是在历届的小学希望杯、迎春杯的比赛中出现的几何问题大多仅仅用面积公式是不能解决的,这就需要我们要进行适当的转化。转化的方法大体上分两点:(1)利用平移、旋转、弦图、割补法、差不变等技巧解题(2)利用五大模型之高相等面积比=底的比(关键高相等:同一个三角形等高、平行线间的三角形等高)(3)利用五大模型之相似三角形:相似三角形在我们小学的学习过程中常用的就是金字塔和沙漏,对应关系如下:①②:三知识框架1.变换位值2.割补法3.等积变换四例题讲解例1按照图中的样子,在一个平行四边形纸片上剪去了甲、乙两个直角三角形。一直甲三角形的两条直角边分别为2厘米和4厘米,乙三角形的两条直角边分别为3厘米和6厘米,求图中阴影部分的面积。例2有红黄绿三块大小一样正方形纸块,放在一个底面为正方形的盒内,它们之间相互叠合。已知,露在在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10。求正方形盒底的面积。例3例3如图所示,在正方形ABCD中,红色、绿色正方形的面积分别是52和13,且红绿两个正方形有一个顶点重合。黄色正方形的一个顶点位于红色正方形两条对角线的焦点,另一个顶点位于绿色正方形两条对角线的交点。求黄色正方形的面积。例4已知正方形的面积是120平方厘米,B、E为正方形边上的中点,求题中阴影部分的面积是多少平方厘米?例5有一个长方形,它的长是宽的4倍,对角线长34厘米,求这个长方形的面积。例6四个完全一样的直角三角形和一个小正方形拼成一个大正方形如果小正方形面积是1平方米,大正方形面积是5平方米。那么直角三角的直角边长度是多少米?例7如图所示在四边形ABCD中,线段BC长为6厘米,角ABC为直角,角BCD为1350,而且点A到边CD的垂线AE的长为12厘米。线段ED的长为5厘米,四边形ABCD的面积是多少平方厘米?例8如图,有四个长方形的面积分别是是1平方厘米、23平方厘米和4平方厘米,组合成一个大的长方形,求图中阴影部分的面积。例9如图,长方形ABCD被CE、DF分成四块,一直三块的面积分别是2、5、8平方厘米,那么余下的四边形OFBC的面积是多少平方厘米?例10正方形ABCD的面积为1,EFGH分别是AB、BC、CD、AD的四等分点如图,求阴影部分的面积?例11已知长方形ABCD的面积是70平方厘米,E是AD的中点,F、G是BC边上的三等分点,求阴影三角形EHO的面积是多少平方厘米?例12如图,在平行四边形ABCD中,BC=20,高为12,并且FM//NH//CD,已知BM=8,CN=5,四边形EHGH的面积是多少?五课堂练习如图,ABCD长方形中,阴影部分是直角三角形且面积为54,OD的长是16,OB的长是9。那么四边形OECD的面积是多少?一块长方形的草坪(阴影部分),长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路,求草坪总面积。六课后作业1、照图中的样子,在一个正方形的纸板上割去两个直角三角形,求图中阴影部分的面积。2、两块直角三角形的三角板,直角边分别是10厘米和6厘米,如下图那样重合,求重合部分的面积?七励志或学科小故事——阿基米德判断黄金真假叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。王冠做成后,国王拿在手里觉得有点轻。他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重。国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题。回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解。一天,他的夫人逼他洗澡。当他跳入池中时,水从池中溢了出来。阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来。他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:优勒加!优勒加!(意为发现了)。夫人这回可真着急了,嘴里嘟囔着真疯了,真疯了,便随后追了出去。街上的人不知发生了什么事,也都跟在后面追着看。原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同。如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假。阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假。在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银。烦人的王冠之谜终于解开了。
本文标题:小学奥数教案图形与面积
链接地址:https://www.777doc.com/doc-2504027 .html