您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 四川省巴中市2014年中考数学试卷(解析版)
年四川省巴中市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(2014年四川巴中)﹣的相反数是()A.﹣B.C.﹣5D.5分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:﹣的相反数是,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2014年四川巴中)2014年三月发生了一件举国悲痛的空难事件﹣﹣马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,在搜救方面花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为()元.A.9.34×102B.0.934×103C.9.34×109D.9.34×1010分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150千万有11位,所以可以确定n=11﹣1=10.解:934千万=93400000000=9.34×1010.故选:D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(2014年四川巴中)如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°分析:根据角平分线的定义可得∠FCM=∠ACF,再根据两直线平行,同位角相等可得∠B=∠FCM.解:∵CF是∠ACM的平分线,∴∠FCM=∠ACF=50°,∵CF∥AB,∴∠B=∠FCM=50°.故选D.点评:本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.4.(2014年四川巴中)要使式子有意义,则m的取值范围是()A.m>﹣1B.m≥﹣1C.m>﹣1且m≠1D.m≥﹣1且m≠1分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:,解得:m≥﹣1且m≠1.故选D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.(2014年四川巴中)如图,两个大小不同的实心球在水平面靠在一起组成如图所示的几何体,则该几何体的左视图是()A.两个外切的圆B.两个内切的圆C.两个内含的圆D.一个圆分析:根据左视图是从左面看得到的视图,圆的位置关系解答即可.解:从左面看,为两个内切的圆,切点在水平面上,所以,该几何体的左视图是两个内切的圆.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.(2014年四川巴中)今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有()A.4个B.3个C.2个D.1个分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选C.点评:本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7.(2014年四川巴中)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.分析:根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,也不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、是轴对称图形,不是中心对称图形.故本选项错误.故选C.点评:考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.(2014年四川巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选D.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.9.(2014年四川巴中)已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限分析:根据m+n=6,mn=8,可得出m与n为同号且都大于0,再进行选择即可.解:∵mn=8>0,∴m与n为同号,∵m+n=6,∴m>0,n>0,∴直线y=mx+n经过第一、二、三象限,故选B.点评:本题考查了一次函数图象在坐标平面内的位置与m、n的关系.解答本题注意理解:直线y=mx+n所在的位置与m、n的符号有直接的关系.m>0时,直线必经过一、三象限.m<0时,直线必经过二、四象限.n>0时,直线与y轴正半轴相交.n=0时,直线过原点;n<0时,直线与y轴负半轴相交.10.(2014年四川巴中)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c分析:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y<0,即可判断;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.解:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(共10小题,每小题3分,满分30分)11.(2014年四川巴中)若一个正多边形的一个内角等于135°,那么这个多边形是正边形.分析:一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180﹣135=45度,360÷45=8,则这个多边形是八边形.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.(2014年四川巴中)若分式方程﹣=2有增根,则这个增根是.分析:分式方程变形后,去分母转化为整式方程,根据分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.解:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.(3分)(2014年四川巴中)分解因式:3a2﹣27=.分析:应先提取公因式3,再对余下的多项式利用平方差公式继续分解.解:3a2﹣27=3(a2﹣9)=3(a2﹣32)=3(a+3)(a﹣3).点评:本题考查了提公因式法和平方差公式分解因式,需要进行二次分解因式,分解因式要彻底.14.(2014年四川巴中)已知一组数据:0,2,x,4,5的众数是4,那么这组数据的中位数是.分析:根据众数为4,可得x=4,然后把这组数据按照从小到大的顺序排列,找出中位数.解:∵数据0,2,x,4,5的众数是4,∴x=4,这组数据按照从小到大的顺序排列为:0,2,4,4,5,则中位数为:4.故答案为:4.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.(2014年四川巴中)若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4π,扇形的半径为4,再根据弧长公式求解.解:设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n,根据题意得4π=,解得n=180°.故答案为180°.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(2014年四川巴中)菱形的两条对角线长分别是方程x2﹣14x+48=0的两实根,则菱形的面积为.分析:菱形的对角线互相垂直,四边形的对角线互相垂直的话,面积等于对角线乘积的一半,先解出方程的解,可求出结果.解:x2﹣14x+48=0x=4或x=12.所以菱形的面积为:(4×12)÷2=24.菱形的面积为:24.故答案为:24.点评:本题考查菱形的性质,菱形的对角线互相垂直,以即对角线互相垂直的四边形的面积的特点和根与系数的关系.17.(2014年四川巴中)如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是.分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.解:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°,∴∠BOC=2∠A=70°.故答案为70°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.(2014年四川巴中)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.分析:首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA,进而得出B′的坐标.解:直线y=﹣x+4与x轴,y轴分别交于A(3,0),B(0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA长,即为3,即横坐标为OA+OB=O
本文标题:四川省巴中市2014年中考数学试卷(解析版)
链接地址:https://www.777doc.com/doc-2588967 .html